import time
参数times用来模拟网络请求的时间
def get_html(times):
time.sleep(times)
print("get page {}s finished".format(times))
return times
executor = ThreadPoolExecutor(max_workers=2)
通过submit函数提交执行的函数到线程池中,submit函数立即返回,不阻塞
task1 = executor.submit(get_html, (3))
task2 = executor.submit(get_html, (2))
done方法用于判定某个任务是否完成
print(task1.done())
cancel方法用于取消某个任务,该任务没有放入线程池中才能取消成功
print(task2.cancel())time.sleep(4)print(task1.done())
result方法可以获取task的执行结果
print(task1.result())
执行结果# False
表明task1未执行完成# False
表明task2取消失败,因为已经放入了线程池中
get page 2s finished# get page 3s finished# True
由于在get page 3s finished之后才打印,所以此时task1必然完成了
3
得到task1的任务返回值
* ``ThreadPoolExecutor``构造实例的时候,传入``max_workers``参数来设置线程池中最多能同时运行的线程数目。
* 使用``submit``函数来提交线程需要执行的任务(函数名和参数)到线程池中,并返回该任务的句柄(类似于文件、画图),注意``submit()``不是阻塞的,而是立即返回。
* 通过``submit``函数返回的任务句柄,能够使用``done()``方法判断该任务是否结束。上面的例子可以看出,由于任务有2s的延时,在``task1``提交后立刻判断,``task1``还未完成,而在延时4s之后判断,``task1``就完成了。
* 使用``cancel()``方法可以取消提交的任务,如果任务已经在线程池中运行了,就取消不了。这个例子中,线程池的大小设置为2,任务已经在运行了,所以取消失败。如果改变线程池的大小为1,那么先提交的是``task1`,`task2``还在排队等候,这是时候就可以成功取消。
* 使用`result()`方法可以获取任务的返回值。查看内部代码,发现这个方法是阻塞的。
现在我也找了很多测试的朋友,做了一个分享技术的交流群,共享了很多我们收集的技术文档和视频教程。
如果你不想再体验自学时找不到资源,没人解答问题,坚持几天便放弃的感受
可以加入我们一起交流。而且还有很多在自动化,性能,安全,测试开发等等方面有一定建树的技术大牛
分享他们的经验,还会分享很多直播讲座和技术沙龙
可以免费学习!划重点!开源的!!!
qq群号:110685036【暗号:csdn999】
![](https://img-blog.csdnimg.cn/direct/10b32ebde96f4f3d94b8bd9506c6fddb.png)
## **as\_completed**
上面虽然提供了判断任务是否结束的方法,但是不能在主线程中一直判断啊。有时候我们是得知某个任务结束了,就去获取结果,而不是一直判断每个任务有没有结束。这是就可以使用``as_completed``方法一次取出所有任务的结果。
from concurrent.futures import ThreadPoolExecutor, as_completed
import time
参数times用来模拟网络请求的时间
def get_html(times):
time.sleep(times)
print("get page {}s finished".format(times))
return times
executor = ThreadPoolExecutor(max_workers=2)
urls = [3, 2, 4] # 并不是真的url
all_task = [executor.submit(get_html, (url)) for url in urls]
for future in as_completed(all_task):
data = future.result()
print("in main: get page {}s success".format(data))#
执行结果
get page 2s finished
in main: get page 2s success
get page 3s finished
in main: get page 3s success
get page 4s finished
in main: get page 4s success
``as_completed()``方法是一个生成器,在没有任务完成的时候,会阻塞,在有某个任务完成的时候,会``yield``这个任务,就能执行for循环下面的语句,然后继续阻塞住,循环到所有的任务结束。从结果也可以看出,**先完成的任务会先通知主线程**。
### **map**
除了上面的``as_completed``方法,还可以使用``executor.map``方法,但是有一点不同。
from concurrent.futures import ThreadPoolExecutor
import time
参数times用来模拟网络请求的时间def get_html(times):
time.sleep(times)
print("get page {}s finished".format(times))
return times
executor = ThreadPoolExecutor(max_workers=2)
urls = [3, 2, 4] # 并不是真的url
for data in executor.map(get_html, urls):
print("in main: get page {}s success".format(data))
执行结果
get page 2s finished
get page 3s finished
in main: get page 3s success
in main: get page 2s success
get page 4s finished
in main: get page 4s success
使用``map``方法,无需提前使用``submit``方法,``map``方法与``python``标准库中的``map``含义相同,都是将序列中的每个元素都执行同一个函数。上面的代码就是对``urls``的每个元素都执行`get_html`函数,并分配各线程池。可以看到执行结果与上面的``as_completed``方法的结果不同,**输出顺序和****`**`**urls**`**`列表的顺序相同**,就算2s的任务先执行完成,也会先打印出3s的任务先完成,再打印2s的任务完成。
### **wait**
``wait``方法可以让主线程阻塞,直到满足设定的要求。
from concurrent.futures import ThreadPoolExecutor, wait, ALL_COMPLETED, FIRST_COMPLETEDimport time
参数times用来模拟网络请求的时间
def get_html(times):
time.sleep(times)
print("get page {}s finished".format(times))
return times
executor = ThreadPoolExecutor(max_workers=2)
urls = [3, 2, 4] # 并不是真的url
all_task = [executor.submit(get_html, (url)) for url in urls]
wait(all_task, return_when=ALL_COMPLETED)print(“main”)
执行结果
get page 2s finished
get page 3s finished
get page 4s finished
main
``wait``方法接收3个参数,等待的任务序列、超时时间以及等待条件。等待条件``return_when``默认为``ALL_COMPLETED``,表明要等待所有的任务都结束。可以看到运行结果中,确实是所有任务都完成了,主线程才打印出``main``。等待条件还可以设置为``FIRST_COMPLETED``,表示第一个任务完成就停止等待。
### 最后
> **🍅 硬核资料**:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
> **🍅 技术互助**:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
> **🍅 面试题库**:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
> **🍅 知识体系**:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化学习资料的朋友,可以戳这里无偿获取](https://bbs.csdn.net/topics/618317507)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**