关于圣诞帽的设置准备
准备一个PNG格式的圣诞帽图片,png 图片可以直接用 Alpha通道 作为掩膜使用。就算你是 jpg 格式,也要先转换成 png 格式,不要直接重命名改格式,要么你找个图片,截图保存的格式改成png,要么找个软件,比如PS去改一下。
找个差不多这样的
为了能够与 RGB 通道的头像图片进行运算,这里要将帽子图像分离成 RGB 通道图像和 alpha通道图像。
r,g,b,a = cv2.split(hat_img)
rgb_hat = cv2.merge((r,g,b))
cv2.imwrite(“hat_alpha.jpg”,a)
分离后得到的 alpha通道图像长这样:
然后来实现人脸识别
为了你们学习,我真的是呕心沥血,都把女朋友照骗用来测试了~
来 ,上照骗…
既然是要做人脸识别,那么照骗就必须要真人正面照,不然你整个侧面的也识别不了撒~
识别不了,那帽子它就会自动变色,越来越绿,飞到了你的头顶…
接下来用 dlib 的正脸检测器进行人脸检测,用 dlib 提供的模型提取人脸的五个关键点。
人脸关键点检测器
predictor_path = “shape_predictor_5_face_landmarks.dat”
predictor = dlib.shape_predictor(predictor_path)
正脸检测器
detector = dlib.get_frontal_face_detector()
正脸检测
dets = detector(img, 1)
如果检测到人脸
if len(dets)>0:
for d in dets:
x,y,w,h = d.left(),d.top(), d.right()-d.left(), d.bottom()-d.top()
x,y,w,h = faceRect
cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2,8,0)
关键点检测,5个关键点。
shape = predictor(img, d)
for point in shape.parts():
cv2.circle(img,(point.x,point.y),3,color=(0,255,0))
cv2.imshow(“image”,img)
cv2.waitKey()
图片打印效果
自动调节帽子大小
选取两个眼角的点,求中心作为放置帽子的x方向的参考坐标,y 方向的坐标用人脸框上线的 y 坐标表示。
根据人脸检测得到的人脸的大小调整帽子的大小,使得帽子大小合适。
所以啊,女朋友照片的脸有多正面做出来的效果就有多好。
选取左右眼眼角的点
point1 = shape.part(0)
point2 = shape.part(2)
求两点中心
eyes_center = ((point1.x+point2.x)//2,(point1.y+point2.y)//2)
根据人脸大小调整帽子大小
factor = 1.5
resized_hat_h = int(round(rgb_hat.shape[0]*w/rgb_hat.shape[1]*factor))
resized_hat_w = int(round(rgb_hat.shape[1]*w/rgb_hat.shape[1]*factor))
if resized_hat_h > y:
resized_hat_h = y-1
根据人脸大小调整帽子大小
resized_hat = cv2.resize(rgb_hat,(resized_hat_w,resized_hat_h))
帽子区域处理
首先把帽子的 alpha通道 作为 mask掩膜:
mask = cv2.resize(a,(resized_hat_w,resized_hat_h))
mask_inv = cv2.bitwise_not(mask)
然后从人像图中去除需要添加帽子的区域:
帽子相对与人脸框上线的偏移量
dh = 0
dw = 0
原图ROI
bg_roi = img[y+dh-resized_hat_h:y+dh, x+dw:x+dw+resized_hat_w]
bg_roi = img[y+dh-resized_hat_h:y+dh,(eyes_center[0]-resized_hat_w//3):(eyes_center[0]+resized_hat_w//3*2)]
原图ROI中提取放帽子的区域
bg_roi = bg_roi.astype(float)
mask_inv = cv2.merge((mask_inv,mask_inv,mask_inv))
alpha = mask_inv.astype(float)/255
相乘之前保证两者大小一致(可能会由于四舍五入原因不一致)
alpha = cv2.resize(alpha,(bg_roi.shape[1],bg_roi.shape[0]))
print("alpha size: ",alpha.shape)
print("bg_roi size: ",bg_roi.shape)
bg = cv2.multiply(alpha, bg_roi)
bg = bg.astype(‘uint8’)
提取后效果图
再提取帽子区域
hat = cv2.bitwise_and(resized_hat,resized_hat,mask = mask)
效果图
给女朋友戴帽子
帽子处理好了就该给她戴上去了,把提取的圣诞帽区域和图片中提取的区域相加后放到原图中去。
注意:相加之前resize一下保证两者大小一致。
相加之前保证两者大小一致(可能会由于四舍五入原因不一致)
hat = cv2.resize(hat,(bg_roi.shape[1],bg_roi.shape[0]))
两个ROI区域相加
add_hat = cv2.add(bg,hat)
cv2.imshow(“add_hat”,add_hat)
把添加好帽子的区域放回原图
img[y+dh-resized_hat_h:y+dh,(eyes_center[0]-resized_hat_w//3):(eyes_center[0]+resized_hat_w//3*2)] = add_hat
最后的效果图
================================================================
效果展示
女朋友太多了,这里就选用现女友了,免得这些前女友又回来找我。
GUI界面实现代码
import PySimpleGUI as sg
import os.path
import cv2
file_list_column = [
[sg.Submit(‘立即戴帽’, key=‘Go’, size=(15, 1)), sg.Cancel(‘溜了溜了’, key=‘Cancel’, size=(15, 1))],
[
sg.Text(“图片存放位置”),
sg.In(size=(25, 1), enable_events=True, key=“-FOLDER-”),
sg.FolderBrowse(‘选择’),
],
[
sg.Listbox(
values=[], enable_events=True, size=(40, 20), key=“-FILE LIST-”
)
]
]
image_viewer_column = [
[sg.Text(“从左边女朋友中选择一个:”)],
[sg.Image(key=“-IMAGE-”)]
]
layout = [
[
sg.Column(file_list_column),
sg.VSeperator(),
sg.Column(image_viewer_column),
]
]
window = sg.Window(“给女朋友添加一个圣诞帽”, layout)
filename = ‘’
while True:
event, values = window.read()
if event == “Cancel” or event == sg.WIN_CLOSED:
break
if event == “-FOLDER-”:
folder = values[“-FOLDER-”]
try:
file_list = os.listdir(folder)
except:
file_list = []
fnames = [
f
for f in file_list
if os.path.isfile(os.path.join(folder, f))
and f.lower().endswith((“.jpg”, “.png”))
]
window[“-FILE LIST-”].update(fnames)
elif event == “-FILE LIST-”:
try:
filename = os.path.join(values[“-FOLDER-”], values[“-FILE LIST-”][0])
if filename.endswith(‘.jpg’):
im = cv2.imread(filename)
cv2.imwrite(filename.replace(‘jpg’, ‘png’), im)
window[“-IMAGE-”].update(filename=filename.replace(‘jpg’, ‘png’))
except Exception as e:
print(e)
elif event == “Go”:
try:
output = add_hat(filename)
展示效果
cv2.imshow(“output”,output)
cv2.waitKey(0)
cv2.imwrite(“output.png”,output)
print(output)
window[“-IMAGE-”].update(filename=‘output.png’)
except:
print(‘OMG!添加失败了!’)
cv2.destroyAllWindows()
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。
别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。
我先来介绍一下这些东西怎么用,文末抱走。
(1)Python所有方向的学习路线(新版)
这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
最近我才对这些路线做了一下新的更新,知识体系更全面了。
(2)Python学习视频
包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。
(3)100多个练手项目
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。
(4)200多本电子书
这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。
基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。
(5)Python知识点汇总
知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。
(6)其他资料
还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。
这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!