《消息队列高手课》如何使用异步设计提升系统性能?_python

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前在阿里

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新Linux运维全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上运维知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化的资料的朋友,可以点击这里获取!

对应的时序图是这样的:

在这个例子的实现过程中,我们调用了另外一个微服务 Add(account, amount),它的功能是给账户 account 增加金额 amount,当 amount 为负值的时候,就是扣减响应的金额。

需要特别说明的是,在这段代码中,我为了使问题简化以便我们能专注于异步和性能优化,省略了错误处理和事务相关的代码,你在实际的开发中不要这样做。

  1. 同步实现的性能瓶颈

首先我们来看一下同步实现,对应的伪代码如下:

Transfer(accountFrom, accountTo, amount) {
  // 先从 accountFrom 的账户中减去相应的钱数
  Add(accountFrom, -1 * amount)
  // 再把减去的钱数加到 accountTo 的账户中
  Add(accountTo, amount)
  return OK
}

上面的伪代码首先从 accountFrom 的账户中减去相应的钱数,再把减去的钱数加到 accountTo 的账户中,这种同步实现是一种很自然方式,简单直接。那么性能表现如何呢?接下来我们就来一起分析一下性能。

假设微服务 Add 的平均响应时延是 50ms,那么很容易计算出我们实现的微服务 Transfer 的平均响应时延大约等于执行 2 次 Add 的时延,也就是 100ms。那随着调用 Transfer 服务的请求越来越多,会出现什么情况呢?

在这种实现中,每处理一个请求需要耗时 100ms,并在这 100ms 过程中是需要独占一个线程的,那么可以得出这样一个结论:每个线程每秒钟最多可以处理 10 个请求。我们知道,每台计算机上的线程资源并不是无限的,假设我们使用的服务器同时打开的线程数量上限是 10,000,可以计算出这台服务器每秒钟可以处理的请求上限是: 10,000 (个线程)* 10(次请求每秒) = 100,000 次每秒。

如果请求速度超过这个值,那么请求就不能被马上处理,只能阻塞或者排队,这时候 Transfer 服务的响应时延由 100ms 延长到了:排队的等待时延 + 处理时延 (100ms)。也就是说,在大量请求的情况下,我们的微服务的平均响应时延变长了。

这是不是已经到了这台服务器所能承受的极限了呢?其实远远没有,如果我们监测一下服务器的各项指标,会发现无论是 CPU、内存,还是网卡流量或者是磁盘的 IO 都空闲的很,那我们 Transfer 服务中的那 10,000 个线程在干什么呢?对,绝大部分线程都在等待 Add 服务返回结果。

也就是说,采用同步实现的方式,整个服务器的所有线程大部分时间都没有在工作,而是都在等待。

如果我们能减少或者避免这种无意义的等待,就可以大幅提升服务的吞吐能力,从而提升服务的总体性能。

  1. 采用异步实现解决等待问题

接下来我们看一下,如何用异步的思想来解决这个问题,实现同样的业务逻辑。

TransferAsync(accountFrom, accountTo, amount, OnComplete()) {
  // 异步从 accountFrom 的账户中减去相应的钱数,然后调用 OnDebit 方法。
  AddAsync(accountFrom, -1 * amount, OnDebit(accountTo, amount, OnAllDone(OnComplete())))
}
// 扣减账户 accountFrom 完成后调用
OnDebit(accountTo, amount, OnAllDone(OnComplete())) {
  //  再异步把减去的钱数加到 accountTo 的账户中,然后执行 OnAllDone 方法
  AddAsync(accountTo, amount, OnAllDone(OnComplete()))
}
// 转入账户 accountTo 完成后调用
OnAllDone(OnComplete()) {
  OnComplete()
}

细心的你可能已经注意到了,TransferAsync 服务比 Transfer 多了一个参数,并且这个参数传入的是一个回调方法 OnComplete()(虽然 Java 语言并不支持将方法作为方法参数传递,但像 JavaScript 等很多语言都具有这样的特性,在 Java 语言中,也可以通过传入一个回调类的实例来变相实现类似的功能)。

这个 TransferAsync() 方法的语义是:请帮我执行转账操作,当转账完成后,请调用 OnComplete() 方法。调用 TransferAsync 的线程不必等待转账完成就可以立即返回了,待转账结束后,TransferService 自然会调用 OnComplete() 方法来执行转账后续的工作。

异步的实现过程相对于同步来说,稍微有些复杂。我们先定义 2 个回调方法:

  • OnDebit():扣减账户 accountFrom 完成后调用的回调方法;
  • OnAllDone():转入账户 accountTo 完成后调用的回调方法。

整个异步实现的语义相当于:

  1. 异步从 accountFrom 的账户中减去相应的钱数,然后调用 OnDebit 方法;
  2. 在 OnDebit 方法中,异步把减去的钱数加到 accountTo 的账户中,然后执行 OnAllDone 方法;
  3. 在 OnAllDone 方法中,调用 OnComplete 方法。

绘制成时序图是这样的:

你会发现,异步化实现后,整个流程的时序和同步实现是完全一样的,区别只是在线程模型上由同步顺序调用改为了异步调用和回调的机制。

接下来我们分析一下异步实现的性能,由于流程的时序和同步实现是一样,在低请求数量的场景下,平均响应时延一样是 100ms。在超高请求数量场景下,异步的实现不再需要线程等待执行结果,只需要个位数量的线程,即可实现同步场景大量线程一样的吞吐量。

由于没有了线程的数量的限制,总体吞吐量上限会大大超过同步实现,并且在服务器 CPU、网络带宽资源达到极限之前,响应时延不会随着请求数量增加而显著升高,几乎可以一直保持约 100ms 的平均响应时延。

看,这就是异步的魔力。

简单实用的异步框架: CompletableFuture

在实际开发时,我们可以使用异步框架和响应式框架,来解决一些通用的异步编程问题,简化开发。Java 中比较常用的异步框架有 Java8 内置的CompletableFuture和 ReactiveX 的RxJava,我个人比较喜欢简单实用易于理解的 CompletableFuture,但是 RxJava 的功能更加强大。有兴趣的同学可以深入了解一下。

Java 8 中新增了一个非常强大的用于异步编程的类:CompletableFuture,几乎囊获了我们在开发异步程序的大部分功能,使用 CompletableFuture 很容易编写出优雅且易于维护的异步代码。

接下来,我们来看下,如何用 CompletableFuture 实现的转账服务。

首先,我们用 CompletableFuture 定义 2 个微服务的接口:

/**
 * 账户服务
 */
public interface AccountService {
    /**
     * 变更账户金额
     * @param account 账户 ID
     * @param amount 增加的金额,负值为减少
     */
    CompletableFuture<Void> add(int account, int amount);
}
/**
 * 转账服务
 */
public interface TransferService {
    /**
     * 异步转账服务
     * @param fromAccount 转出账户
     * @param toAccount 转入账户
     * @param amount 转账金额,单位分
     */
    CompletableFuture<Void> transfer(int fromAccount, int toAccount, int amount);
}

可以看到这两个接口中定义的方法的返回类型都是一个带泛型的 CompletableFeture,尖括号中的泛型类型就是真正方法需要返回数据的类型,我们这两个服务不需要返回数据,所以直接用 Void 类型就可以。

然后我们来实现转账服务:

/**
 * 转账服务的实现
 */
public class TransferServiceImpl implements TransferService {
    @Inject
    private  AccountService accountService; // 使用依赖注入获取账户服务的实例
    @Override
    public CompletableFuture<Void> transfer(int fromAccount, int toAccount, int amount) {
      // 异步调用 add 方法从 fromAccount 扣减相应金额
      return accountService.add(fromAccount, -1 * amount)
      // 然后调用 add 方法给 toAccount 增加相应金额
      .thenCompose(v -> accountService.add(toAccount, amount));    
    }
}



### 最后的话

最近很多小伙伴找我要Linux学习资料,于是我翻箱倒柜,整理了一些优质资源,涵盖视频、电子书、PPT等共享给大家!

### 资料预览

给大家整理的视频资料:

![](https://img-blog.csdnimg.cn/img_convert/b977060bbedc00904551cd3ec80c6e48.png)

给大家整理的电子书资料:

  

![](https://img-blog.csdnimg.cn/img_convert/122d3d8f1193dfbd9f30e645f30646b4.png)



**如果本文对你有帮助,欢迎点赞、收藏、转发给朋友,让我有持续创作的动力!**

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化的资料的朋友,可以点击这里获取!](https://bbs.csdn.net/topics/618635766)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化的资料的朋友,可以点击这里获取!](https://bbs.csdn.net/topics/618635766)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值