网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
兄弟节点
|
具有相同父节点的节点互称为兄弟节点
|
如上图:B
、
C
是兄弟节点
|
| 节点的层次 | 从根开始定义起,根为第1层,根的子节点为第2层,以此类推 | 如上图:A层为第1层,B层为第二层… |
|
树的高度或深度
| 树中节点的最大层次 | 如上图:树的高度为4 |
|
堂兄弟节点
|
双亲在同一层的节点互为堂兄弟
| 如上图:H、I互为兄弟节点 |
|
节点的祖先
|
从根到该节点所经分支上的所有节点
| 如上图:A是所有节点的祖先 |
|
子孙
|
以某节点为根的子树中任一节点都称为该节点的子孙
| 如上图:所有节点都是A的子孙 |
| 树的度 |
一棵树中最大节点的度为树的度
| 如上图:树的节点为4 |
树的表示
树结构相对线性表就比较复杂了:既要保存值域,也要保存结点和结点之间的关系
实际中树的多种表示:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法
注:这里就简单的了解其中最常用的孩子兄弟表示法(相比来说最好的)
- 结构:
typedef int DataType;//数据类型
struct Node
{
struct Node* firstChild1; // 第一个孩子结点
struct Node* pNextBrother; // 指向其下一个兄弟结点
DataType data; // 结点中的数据域
};
- 图示:
- 树的实际运用:文件系统的目录树结构
二叉树概念及结构
- 概念:
二叉树由一个根节点加上左子树和右子树组成:
1.二叉树度最大为2(度可以为0,1,2)
2.二叉树的子树有左右之分,次序不能颠倒(有序树)(没有左树,一定没有右树;有左树,不一定有右树)
特殊的二叉树
- 满二叉树:
一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树
也就是说,如果一个二叉树的层数为K,且结点总数是2^k-1,则它就是满二叉树
- 完全二叉树:
完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的(特殊的完全二叉树)
对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树
- 图示:
二叉树的性质
1.若规定根节点的层数为
1
,则一棵非空二叉树的
第
i
**层上最多有2^(i-1)**个结点
2.若规定根节点的层数为
1
,则
深度为
h的二叉树的最大结点数是2^h-1
3.对任何一棵二叉树
, 设
度为
0
其叶结点个数为n0
,
度为
2
的分支结点个数为n2
,
则有n0=n2
+
1解释:
当只有一个节点时,n0=1,n2=0(符合)接下来每增加一度2的树,都会增加2个度0的树(画图归纳理解)(符合)
- 图示:性质3
4.若规定根节点的层数为1,具有n****个结点的满二叉树的深度,h=log2(n+1)(是log以2为底,n+1为对数)
5.对于具有
n
个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从
0
开始编号,则对于序号为i
的结点有:
若
i>0
,
i
位置节点的双亲序号:
(i-1)/2
;
i=0
,
i
为根节点编号,无双亲节点
若
2i+1<n
,左孩子序号:
2i+1
,
2i+1>=n
否则无左孩子
若
2i+2<n
,右孩子序号:
2i+2
,
2i+2>=n
否则无右孩子
- 图示:性质5
二叉树的存储结构
- 存储结构类型:
顺序存储
顺序结构存储就是使用
数组来存储
,一般使用数组只适合表示完全二叉树(不完全二叉树有空间的浪费**)**而现实中使用中只有堆才会使用数组来存储
注:二叉树顺
序存储在物理上是一个数组,在逻辑上是一颗二叉树
- 图示:
链式存储
用链表来表示一棵二叉树,即用链来指示元素的逻辑关系
通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址
链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链(红黑树等结构会用到三叉链)
- 图示:
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。
别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。
我先来介绍一下这些东西怎么用,文末抱走。
(1)Python所有方向的学习路线(新版)
这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
最近我才对这些路线做了一下新的更新,知识体系更全面了。
(2)Python学习视频
包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。
(3)100多个练手项目
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。
(4)200多本电子书
这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。
基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。
(5)Python知识点汇总
知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。
(6)其他资料
还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。
这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!