Python pandas库159个常用方法使用说明_pythonpandas库用法

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Python知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip1024c (备注Python)
img

正文

62、df[‘销量’].rank(method=’first’)#销量排名(不是排序),method有first\min\max\average

63、df.drop([‘销量’,’ID’],axis=1)#删除列,直接是列名

64、df.drop(df.columns[[4,5]],axis=1)#删除列,是编号

65、df.drop(colums=[‘销量’,’ID’])#此种方式删除列,可以不写axis=1

66、df.drop([‘a’,’b’],axis=0)#删除行,直接是列名

67、df.drop(df.index[[4,5]],axis=0)#删除行,是编号

68、df.drop(index=[‘a’,’b’])#此种方式删除行,可以不写axis=0

69、df[‘ID’].value_counts()#对ID列中数据出现的次数进行统计

70、df[‘ID’].value_counts(normalize=Ture,sort=False)#对ID列中数据出现的次数占比进行统计,并降序排序

71、df[‘ID’].unique()#获取列的唯一值

72、df[‘年龄’].isin([‘a’,11])#查看这列中是否包含a或11

73、pd.cut(df[‘ID’],bins=[0,3,6,10])#用bins指明切分区间

74、pd.qcut(df[‘ID’],3)#ID列切分成3个部分,每部分数据个数尽量一致

75、df.insert(2,’商品’,[‘书’,’笔’,’计算器’])#插入第三列

76、df[’商品’]=[‘书’,’笔’,’计算器’])#插新列,在表的最后面

77、df.T行列互换

78、df.tack()#把表格型数据转化成树形数据

79、df.set_index([‘ID’,’姓名’]).stack().reset_index()#宽表转换成长表,先将共同列设置成行索引,再对其他列

进行转化成树形数据,再重置行索引

80、df.melt(id_vars=[‘ID’,’姓名’],var_name=’year’,value_name=’sale’)#id_var参数指明宽表转换成长表时保持不

变的列,var_name参数表示原来的列索引转化为行索引对应的列名,value_name表示新索引对应值的列名

81、df[‘C1’].apply(lambda x:x+1)#相当于map(),只是需要和lambda配合

82、df.applymap(lambda x:x+1),对表中的所有数据执行相同函数运算

六、数据运算

83、df[‘ID’]+Df[‘ID’]#可进行加减乘除

84、df[‘ID’]>Df[‘ID’]#可进行> < == !=等比较运算

85、df.count()#统计每列的非空值的个数

86、df.count(axis=1)#统计每行的非空值的个数

87、df[‘ID’].count()#统计指定列的非空值的个数

88、df.sum(axis=1)#每列/行求和结果

89、df.mean(axis=1)#每列/行求均值

90、df.max(axis=1)#每列/行求最大值

91、df.min(axis=1)#每列/行求最小值

92、df.median(axis=1)#每列/行求中间值

93、df.mode(axis=1)#每列/行中出现最多的值

94、df.var(axis=1)#每列/行求方差

95、df.std(axis=1)#每列/行求标准差

96、df.quantile(0.25)#求1/4分位数,可以0.5、0.75等分位数

97、df.corr()#求整个DataFrame表中的相关性

七、时间序列

98、from datetime import datetime

99、datatime.now()#返回现在的时间年月日时分秒

100、datatime.now().year#返回年,可以.month.day

101、datatime.now().weekday()-1#返回周几

102、datatime.now().isocalendar()#返回周数

103、 (2018,41,7)#2018年的第41周第7天

104、datatime.now().date()#只返回年月日

105、datatime.now().time()#只返回时间

106、datatime.now().strftime(‘%Y-%m-%d %H:%M:%S’)#返回2020-03-13 09:09:12

107、from dateutil.parer import parse

108、 parse(str_time)#将字符串的时间转化成为时间格式

109、pd.Datetimeindex([‘2020-02-03’,2020-03-05’])#设置时间索引

110、data[‘2018’]#获取2018年的数据

111、data[‘2018-01’]#获取2018年1月的数据

112、data[‘2018-01-05’:‘2018-01-15’]#获取这个时段的数据

113、非时间索引的表格处理

114、df[df[‘成交时间’]==datetime(2018,08,05)]

115、df[df[‘成交时间’]>datetime(2018,08,05)]

116、df[(df[‘成交时间’]>datetime(2018,08,05))&(df[‘成交时间’] <datetime(2018,08,15))]

117、cha=datatime(2018,5,21,19,50)-datatime(2018,5,18,17,50)

118、 cha.days#返回天的时间差

119、 cha.seconds#返回秒的时间差

120、 cha.seconds/3600#返回小时的时间差

121、datatime(2018,5,21,19,50)+timedelta(days=1)#往后移一天

122、datatime(2018,5,21,19,50)+timedelta(seconds=20)#往后移20秒

123、datatime(2018,5,21,19,50)-timedelta(days=1)#往前移一天

八、数据透视表

124、df.groupby(‘客户分类’).count()#客户分类后求数运算

125、df.groupby(‘客户分类’).sum()#客户分类后求和运算

126、df.groupby(‘客户分类’,’区域分类’).sum()#多列分类后求和运算

127、df.groupby(‘客户分类’,’区域分类’)[‘ID’].sum()#多列分类后ID求和运算

128、df[‘ID’]#DataFrame取出一列就是Series类型

129、df.groupby(df[‘ID’]).sum() 相当于 df.groupby(‘ID’).sum()

130、df.groupby(‘客户分类’).aggregate([‘sum’,’count’]# aggregate可实现多种汇总方式

131、df.groupby(‘客户分类’).aggregate({‘ID’:‘count’,’销量’: ‘sum’})

132、# aggregate可针对不同列做不同的汇总运算

133、df.groupby(‘客户分类’).sum().reset_index()#分组汇总后再重置索引,变为标准DataFrame

134、pd.pivot_table(data,values,index,columms,aggfunc,fill_value,margins,dropna,margins_name)

135、数据透视表,data:数据表df,values:值,index:行索引,columns:列索引,aggfunc:values的计算类型,fill_value:对空值的填充方式;margins:是否有合计列;margins_name:合计列的列名

136、pd.pivot_table(df,values=[’ID’,‘销量’],index=’客户分类’,columms=‘区域’,aggfunc={‘ID’:‘count’,’销量’:‘sum’}),fill_value=0,margins=Ture,dropna=None,margins_name=’总计’)

九、多表格拼接

137、pd.merge(df1,df2)#默认自动寻找两个表中的公共列进行拼接

138、pd.merge(df1,df2,on=“学号“)#on来指定连接列,连接列要是公共列

139、pd.merge(df1,df2,on=[‘学号’,’姓名’]#on来指定连接列,连接列要是公共列

140、pd.merge(df1,df2,left_on=‘学号’right_on=’编号’) #由公共列,但类名不同时用左右键指定

141、pd.merge(df1,df2,left_index=‘学号’right_index=’编号’)#两表公共列都是索引列时

142、pd.merge(df1,df2,left_index=‘学号’right_on=’编号’)#公共列一个时索引列一个时普通列

143、pd.merge(df1,df2,on=’学号’,how=’inner’)#返回公共列中对应的公共值拼接(内连接)

144、pd.merge(df1,df2,on=’学号’,how=’left’)#返回公共列中对应的左表值(左连接)

145、pd.merge(df1,df2,on=’学号’,how=’right’)#返回公共列中对应的右表值(右连接)

146、pd.merge(df1,df2,on=’学号’,how=’outer’)#返回公共列中对应的所有值(外连接)

147、pd.concat([df1,df2])#两个结构相同的表纵向连接,保留原索引值

148、pd.concat([df1,df2],ignore_index=True)#两个结构相同的表纵向连接,重新设置索引值

149、pd.concat([df1,df2],ignore_index=True).drop_duplicates()#拼接后去掉重复值

十、导出文件

150、df.to_excel(excel_writer=r’C:\users\zhoulifu\Desktop\测试.xlsx’)#导出文件格式.xlsx用to_excel方法,通过excel_writer参数来实现

151、df.to_excel(excel_writer=r’C:\users\zhoulifu\Desktop\测试.xlsx’,sheet_name=’文档’)

152、df.to_excel(excel_writer=r’C:\users\zhoulifu\Desktop\测试.xlsx’,sheet_name=’文档’,index=False)#导出是去掉索引

153、df.to_excel(excel_writer=r’C:\users\zhoulifu\Desktop\测试.xlsx’,sheet_name=’文档’,index=False,columns=[‘ID’,’销量’,‘姓名’])#设置导出的列

154、df.to_excel(excel_writer=r’C:\users\zhoulifu\Desktop\测试.xlsx’,sheet_name=’文档’,index=False,columns=[‘ID’,’销量’,‘姓名’],encoding=’utf-8’)#设置导出的列

155、df.to_excel(excel_writer=r’C:\users\zhoulifu\Desktop\测试.xlsx’,sheet_name=’文档’,index=False,columns=[‘ID’,’销量’,‘姓名’],encoding=’utf-8’,na_rep=0)#缺失值填充

156、writer=pd.ExcelWriter(excelpath,engine=’xlsxwirter’)#导出多个文件至一个文件的多个sheet

157、df1.to_excel(writer,sheet_name=‘表一’)

158、df2.to_excel(writer,sheet_name=’表二’)

159、writer.save()

关于Python学习资料:

朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】。

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

二、Python必备开发工具

在这里插入图片描述

三、Python视频合集

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述

四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。在这里插入图片描述

五、Python练习题

检查学习结果。
在这里插入图片描述

六、面试资料

在这里插入图片描述

感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:

① 2000多本Python电子书(主流和经典的书籍应该都有了)

② Python标准库资料(最全中文版)

③ 项目源码(四五十个有趣且经典的练手项目及源码)

④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)

⑤ Python学习路线图(告别不入流的学习)

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
n电子书(主流和经典的书籍应该都有了)

② Python标准库资料(最全中文版)

③ 项目源码(四五十个有趣且经典的练手项目及源码)

④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)

⑤ Python学习路线图(告别不入流的学习)

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
[外链图片转存中…(img-SCnfdG6T-1713335857682)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值