用 Python 监控知乎和微博的热门话题

本文介绍了如何使用requests模块在不登录情况下抓取知乎热搜榜数据,并通过BeautifulSoup解析网页源代码,提取出微博热门数据。强调了在选择爬取网址时降低难度和针对页面内容选择合适的解析策略的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

微博热门

在这里插入图片描述

这里有两点要注意:

1、我们选用的网址链接在未登录状态下也可访问,因此 requests 方法中的参数为空也不影响。但爬虫时更多的情况是需要登陆状态,因此也就要求通过设置不同参数来模拟登陆去进行相关操作。

2、通过 requests 模块获取的网页内容,对应的是在网站上右键单击,选择“显示网页源代码”后展现的页面。它与我们实际看到的网页内容或者 F12 进入开发者模式中看到的网页 elements 是不同的。前者是网络请求后返回结果,后者是浏览器对页面渲染后结果。

2. 解析爬到的内容


第一步爬到的是整个页面内容,接下来要在所有内容中去对目标定位,然后将其读取并保存起来。

这里我采用的是 BeautifulSoup,因为学爬虫最先接触这个,用起来也蛮顺手。通过 BeautifulSoup 提供的方法和参数,可以很便捷定位到目标。

在知乎热榜的网页源代码中,拉到最下方可以看到如下:

在这里插入图片描述

在源代码中网页的 script 部分,有现成的整理好的热榜数据。所以我们为了减少工作量,直接通过 BeautifulSoup 取出 script 中内容,再用正则表达式匹配热榜数据列表处的内容。

import requests

import re

from bs4 import BeautifulSoup

headers={“User-Agent”:“”,“Cookie”:“”}

zh_url = “https://www.zhihu.com/billboard”

zh_response = requests.get(zh_url,headers=headers)

webcontent = zh_response.text

soup = BeautifulSoup(webcontent,“html.parser”)

script_text = soup.find(“script”,id=“js-initialData”).get_text()

rule = r’“hotList”😦.*?),“guestFeeds”’

result = re.findall(rule,script_text)

temp = result[0].replace(“false”,“False”).replace(“true”,“True”)

hot_list = eval(temp)

print(hot_list)

这里我利用了 script 中热榜数据的列表结构,在定位取出相关字符串后,先将 js 中的 true 和 false 转化为 Python 中的 True 和 False,最后直接通过 eval() 来将字符串转化为直接可用的数据列表。

运行代码结果如图:

在这里插入图片描述

至于对微博热门的解析,就是中规中矩地利用 BeautifulSoup 来对网页元素进行定位获取:

import requests

from bs4 import BeautifulSoup

url = “https://s.weibo.com/top/summary”

headers={“User-Agent”:“”,“Cookie”:“”}

wb_response = requests.get(url,headers=headers)

webcontent = wb_response.text

soup = BeautifulSoup(webcontent,“html.parser”)

index_list = soup.find_all(“td”,class_=“td-01”)

title_list = soup.find_all(“td”,class_=“td-02”)

level_list = soup.find_all(“td”,class_=“td-03”)

topic_list = []

for i in range(len(index_list)):

item_index = index_list[i].get_text(strip = True)

if item_index==“”:

item_index = “0”

item_title = title_list[i].a.get_text(strip = True)

if title_list[i].span:

item_mark = title_list[i].span.get_text(strip = True)

else:

item_mark = “置顶”

item_level = level_list[i].get_text(strip = True)

topic_list.append({“index”:item_index,“title”:item_title,“mark”:item_mark,“level”:item_level,“link”:f"https://s.weibo.com/weibo?q=%23{item_title}%23&Refer=top"})

print(topic_list)

通过解析,将微博热门数据逐条存入列表中:

在这里插入图片描述

后续对拿到的数据加以处理展示,即可得到很多有趣的应用或实现某些功能。例如集成诸多平台排行榜的 “今日热榜”:

在这里插入图片描述

因为并未展开爬虫细节,今天的总结也比较简单:

1、首先在选取要爬的网址时要给自己降低难度,例如同样是知乎热榜,zhihu.com/hot 需要登陆,而 zhihu.com/billboard 无需登录便可访问

2、解析爬取到的内容时,要结合具体页面内容选择最便捷的方式。当需要批量爬取相似页面时,也要尽量整理通用的解析策略。

完整代码


weibo_top.py

import requests

from bs4 import BeautifulSoup

url = “https://s.weibo.com/top/summary”

headers = {“User-Agent”: “”, “Cookie”: “”}

wb_response = requests.get(url, headers=headers)

webcontent = wb_response.text

soup = BeautifulSoup(webcontent, “html.parser”)

index_list = soup.find_all(“td”, class_=“td-01”)

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里无偿获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值