- 博客(244)
- 收藏
- 关注
原创 国内和国外主流免费算力平台
本文对比了国内外主流免费算力平台,涵盖百度飞桨、阿里天池、Google Colab等。国内平台网络友好、中文生态完善,适合深度学习入门;国外平台资源丰富、多框架兼容。各平台提供免配置GPU环境,支持直接运行代码,并详细说明了资源限制、适用场景及快速上手指南。文末提供通用PyTorch示例代码和平台选择建议,帮助开发者高效利用免费资源进行AI开发与实验。
2026-01-04 19:53:23
284
原创 【DeepSeek系列】论文《mHC: Manifold-Constrained Hyper-Connections》全流程复现详解(附Python代码)
本文详细介绍了《mHC: Manifold-Constrained Hyper-Connections》论文的完整复现过程,包括模型架构、训练逻辑和实验可视化图表的实现。通过理论推导与工程实现的结合,完整再现了论文的核心创新点和实验结果,为研究者提供了可直接运行的参考实现。所有代码和可视化结果均可通过魔搭社区免费算力资源验证。
2026-01-04 19:19:28
1317
原创 【机器学习】深度神经网络(DNN)
本文全面介绍了深度神经网络(DNN)的核心概念与应用。DNN通过多层隐藏层实现分层特征学习,底层提取低级特征,上层组合为高级语义特征。文章详细解析了DNN的网络结构(输入层、隐藏层、输出层)、激活函数选择(ReLU、Sigmoid等)、训练原理(前向传播和反向传播),并提供了完整的Python实现代码。针对训练中的梯度消失、过拟合等问题,提出了ReLU激活函数、批量归一化、Dropout等解决方案。DNN广泛应用于图像识别、自然语言处理、推荐系统等领域,是CNN、RNN等现代深度学习模型的基础框架。
2026-01-03 22:34:04
800
1
原创 【机器学习】深度信念网络(DBN)
深度信念网络(DBN)是由Geoffrey Hinton提出的一种生成式深度学习模型,通过堆叠多个限制玻尔兹曼机(RBM)构建深层结构。其核心特点包括:1)采用无监督预训练和有监督微调的两阶段训练策略,有效解决梯度消失问题;2)能够自动提取数据的多层级抽象特征;3)兼具生成和判别能力。本文详细介绍了DBN的网络结构、RBM组件原理、训练流程(对比散度算法和微调方法),并提供了完整的Python实现代码,包括数据预处理、模型构建、训练过程和可视化分析。
2026-01-03 21:39:19
958
原创 【机器学习】限制性玻尔兹曼机(RBM)
限制性玻尔兹曼机(RBM)是一种无监督学习的生成式神经网络模型,由可见层和隐藏层构成二分图结构,通过能量函数定义概率分布。其核心训练算法是对比散度(CD),通过近似采样避免直接计算配分函数。RBM具有多种变体,可应用于特征学习、推荐系统等领域,曾是深度学习早期重要模型。本文详细阐述了RBM的网络结构、数学原理、训练方法,并提供了Python实现代码,通过人工数据集展示了其生成能力。虽然现代深度学习中RBM已较少直接使用,但其思想对后续模型发展产生了深远影响。
2026-01-02 23:25:04
778
原创 【机器学习】生成对抗网络(GAN)
生成对抗网络(GAN)是一种通过生成器与判别器对抗博弈来学习数据分布的深度学习模型。生成器试图生成逼真样本,判别器则负责区分真实与生成样本。本文详细介绍了GAN的核心思想、数学目标、训练流程及常见挑战(如梯度消失、模式崩溃),并列举了DCGAN、WGAN等经典变体。通过Python代码实现了一个生成正弦曲线的简易GAN,展示了训练过程和结果可视化。实验表明,经过100轮训练后,生成器能产生与真实正弦曲线相似的样本,验证了GAN在数据生成任务中的有效性。
2026-01-02 22:35:54
819
原创 【LeetCode刷题】寻找重复数
题目要求在长度为n+1的数组中找到唯一重复的数字(元素范围[1,n]),要求不修改数组且使用O(1)空间。通过将数组视为链表(索引为节点,值为下一节点),利用快慢指针检测环: 找环:快指针(每次2步)与慢指针(每次1步)相遇; 找入口:从起点和相遇点同步移动,相遇点即为重复数。 示例[1,3,4,2,2]中,链表形成环2→4→2,入口2即为解。算法时间复杂度O(n),空间O(1)。Python代码通过双指针实现,已验证边界用例。
2026-01-01 23:16:13
360
原创 【游戏开发】坦克大战
本文介绍了一个基于Python开发的跨平台2D坦克大战游戏,采用Pygame作为游戏核心引擎,结合Tkinter实现UI菜单,并支持Socket联机功能。游戏包含单人/双人本地模式、联机对战、动态关卡生成、道具系统、BOSS战等核心玩法,以及存档、按键配置等辅助功能。项目采用模块化设计,包括资源加载、精灵分层、联机同步、关卡管理等模块,并通过优化解决了中文显示、跨平台兼容等关键技术问题。最后通过pyinstaller打包为可执行文件,方便分发运行。
2026-01-01 23:02:23
1269
2
原创 自然语言处理实战——基于BP神经网络的命名实体识别
本文实现了一个基于BP神经网络的命名实体识别系统,具有以下特点: 多格式数据集支持:兼容BIO、MSRA和CLUENER三种主流格式,自动识别并合并不同领域数据。 智能数据处理:自动生成词汇表和标签表,支持序列填充/截断,自适应调整批次大小和训练轮数。 模型架构:采用嵌入层+全连接层的BP神经网络,包含ReLU激活和Dropout正则化,适配序列标注任务。 可视化功能:提供训练曲线、混淆矩阵、实体标注等多种可视化图表,支持中文显示优化。
2025-12-31 23:28:53
1210
1
原创 【Python高级编程】2026 丙午马年元旦祝福程序
本文介绍了一个2026丙午马年元旦祝福程序的开发过程。该Python程序采用tkinter和turtle库实现,具有可视化GUI界面,支持动态绘制奔跑小马、雪花飘落和烟花动画效果,并能生成ASCII艺术祝福和个性化姓名祝福。文章详细阐述了需求分析、技术选型、架构设计、核心模块实现、调试优化等开发流程,并提供了完整的Python代码实现。程序通过封装动画状态、优化帧调度、处理资源清理等方式确保了运行流畅性和稳定性。最后还介绍了使用PyInstaller进行跨平台打包的方法,使程序可以方便地分享给他人使用。
2025-12-31 21:52:05
1246
2
原创 自然语言处理实战——基于 BP 神经网络的中文文本情感分类
本文介绍了一个基于BP神经网络的中文文本情感分类实战项目,完整实现了从数据预处理到模型评估的全流程。通过jieba分词、TF-IDF特征提取和纯NumPy实现的BP神经网络,构建了一个能够区分中文文本正负面情感的分类模型。项目包含数据预处理、模型训练、评估指标计算和多维度可视化(包括损失曲线、混淆矩阵、词云和特征重要性分析)等功能模块。实验结果显示模型在测试集上达到75%的准确率,并通过可视化工具直观展示了分类效果和关键特征。
2025-12-30 23:11:33
1170
原创 【机器学习】BP神经网络
本文详细介绍了BP神经网络的算法原理与Python实现。BP神经网络通过前向传播计算输出,反向传播利用链式法则计算梯度,采用梯度下降法更新参数以最小化预测误差。文章系统阐述了网络初始化、前向传播、损失计算、反向传播和参数更新等核心步骤,并提供了完整的Python代码实现,包括激活函数选择、误差项计算和批量训练过程。实验结果显示,该算法在模拟数据集上训练20轮后损失显著下降,验证了BP神经网络的有效性。该实现适用于二分类任务,可通过调整激活函数和损失函数扩展至多分类和回归问题。
2025-12-30 22:42:59
1267
原创 【Python高级编程】Python 核心语法速查演示
本文介绍了一个Python核心语法速查演示程序的开发方案。该程序采用模块化设计,覆盖运算符、字符串、列表、元组、集合、字典、文件操作和布尔值判断等核心语法点,支持自定义测试用例和输出重定向功能。程序通过全局配置开关控制功能显示,包含工具函数封装和异常处理机制,确保在Python3.8+环境下稳定运行。开发过程注重代码规范(PEP8)、中文编码处理(UTF-8)和临时文件清理等细节,最终输出结构清晰的语法演示结果,既适合交互式学习也可生成离线速查表。
2025-12-29 22:02:30
427
2
原创 【Python高级编程】Python中常见的运算符、函数与方法总结
本文系统整理了Python常用数据类型及操作,包含7个核心部分:1.运算符优先级表(含21种运算符)2.字符串处理(17个方法,如format()/split())3.列表操作(13个方法,如append()/sort())4.元组基础(5个方法)5.集合运算(15个方法,如union()/intersection())6.字典操作(9个方法,如get()/update())7.文件操作(8个函数)及数据类型布尔转换规则。重点说明了各类数据结构的特性和方法调用规范,其中字符串方法均返回新对象,列表/字典方法
2025-12-29 21:41:22
894
原创 【游戏开发】登山赛车
本文介绍了一款基于Pygame开发的登山赛车游戏,详细阐述了其开发过程和完整实现。游戏包含物理模拟、关卡系统、养成系统等核心功能,以及天气系统、BOSS挑战等扩展功能。文章从技术栈选择、基础框架搭建开始,逐步讲解了地形生成、车辆物理、道具系统等关键模块的实现,并介绍了存档系统、网络联机等高级功能。最后提供了游戏截图和打包发布方法,展示了从开发到发布的完整流程。该游戏通过Python实现,具有丰富的可玩性和扩展性,适合作为休闲游戏项目参考。
2025-12-28 22:49:25
2603
4
原创 Python适合开发的游戏
Python凭借简洁语法和丰富库支持,在游戏开发领域具有独特优势。它特别适合开发2D休闲游戏(贪吃蛇/俄罗斯方块)、文字冒险游戏、像素风格游戏和策略类游戏,常用Pygame、Arcade等库。Python还能处理轻量级3D游戏和游戏原型开发,使用Ursina、Panda3D等引擎。知名案例包括《文明4》脚本和《DokiDoki文学俱乐部》。虽然不适合开发高性能3A游戏,但Python在快速迭代、逻辑处理和中小型游戏开发方面表现出色,开发者可通过C++扩展解决性能瓶颈问题。
2025-12-28 02:07:19
515
原创 【LeetCode刷题】单词拆分
本文介绍了一个字符串拆分问题,判断给定字符串s是否能由字典wordDict中的单词拼接而成(单词可重复使用)。采用动态规划解法,定义dp[i]表示s前i个字符能否被拆分,初始化dp[0]=True,通过遍历字符串位置和字典单词进行状态转移。Python实现中优化了字典查找效率,并处理了边界条件。测试用例验证了算法的正确性,包括常规可拆分、单词重复使用、不可拆分及空字符串等场景。最终返回dp[n]作为结果,时间复杂度为O(n*m),其中n为字符串长度,m为字典单词数。
2025-12-27 22:03:46
422
原创 【LeetCode刷题】零钱兑换
本文探讨了使用动态规划解决零钱兑换问题。给定不同面额的硬币数组coins和目标金额amount,需计算凑成金额的最少硬币数,若无法凑成则返回-1。核心思路是通过动态规划数组dp记录每个金额的最小硬币数,初始化dp[0]=0,其他为amount+1(表示不可达)。遍历金额时,对每个硬币面额进行状态转移:dp[i] = min(dp[i], dp[i-coin]+1)。最终检查dp[amount]是否被更新,未更新则返回-1。
2025-12-27 20:47:56
340
原创 【LeetCode刷题】打家劫舍
本文解决房屋盗窃问题,要求在不相邻房屋中获取最高金额。采用动态规划方法,定义状态prev_prev和prev分别表示前前间和前一间的最大金额。状态转移方程为current = max(prev, prev_prev + nums[i]),优化空间复杂度至O(1)。示例验证显示算法正确性,如输入[1,2,3,1]输出4,输入[2,7,9,3,1]输出12。Python代码实现包含空间优化版和传统DP数组版,边界处理覆盖空数组和单元素情况。运行结果与预期一致,证明算法有效性。
2025-12-26 21:58:24
460
原创 【Python高级编程】图着色动态可视化 APP
本文介绍了一个基于Python+Tkinter+Matplotlib的图着色算法动态可视化工具。该工具采用回溯法求解无向图的最小顶点着色数,通过交互式界面实现算法过程的可视化展示。核心功能包括:1) 输入图信息并构建邻接矩阵;2) 实现回溯法分步着色;3) 提供圆形、螺旋和网格三种布局;4) 支持8种颜色自定义;5) 动画控制(暂停/继续/调速);6) 视图缩放平移;7) 配置保存/加载和结果导出。
2025-12-26 21:05:40
1098
2
原创 【LeetCode刷题】杨辉三角
该算法用于生成杨辉三角的前numRows行。杨辉三角的每个数是其左上方和右上方数的和。算法步骤包括:1)初始化结果列表,处理numRows=0的边界情况;2)首行固定为[1];3)从第2行开始逐行构建,每行的首尾元素为1,中间元素通过上一行相邻元素相加得到。时间复杂度为O(numRows²),空间复杂度为O(1)(不考虑输出存储)。Python实现通过双层循环完成,适用于1≤numRows≤30的输入。测试验证了5行、1行及0行的输出正确性。
2025-12-25 22:57:02
270
原创 【LeetCode刷题】爬楼梯
该问题要求计算爬n阶楼梯的方法数,每次可爬1或2阶。通过分析发现,爬n阶的方法数等于前两阶方法数之和,即斐波那契数列的变种。递推公式为f(n)=f(n-1)+f(n-2),初始条件f(1)=1,f(2)=2。采用动态规划优化空间复杂度至O(1),通过滑动窗口(prev_1和prev_2)迭代计算。Python实现中,边界条件直接返回n,循环从3到n递推,最终返回prev_2。测试案例验证了代码正确性,适用于1≤n≤45的输入范围。
2025-12-25 22:42:20
487
原创 【LeetCode刷题】划分字母区间
本文提出了一种贪心算法来解决字符串划分问题,要求将字符串划分为尽可能多的片段,使得每个字符仅出现在一个片段中。算法首先统计每个字符的最后出现位置,然后遍历字符串,动态维护当前片段的结束位置。当遍历索引等于当前片段结束位置时,完成一个片段的划分并记录长度。该方法时间复杂度为O(n),空间复杂度为O(1)。通过多个测试用例验证了算法的正确性,包括常规情况和边界条件。
2025-12-24 22:07:49
323
原创 【LeetCode刷题】跳跃游戏Ⅱ
本文介绍了一种基于贪心策略的算法,用于求解跳跃游戏问题。给定一个非负整数数组,每个元素表示在该位置可跳跃的最大长度,算法计算从数组起始位置到达末尾的最小跳跃次数。通过维护当前跳跃边界和下一次跳跃的最远可达位置,在遍历数组时动态更新这两个变量,当到达当前边界时增加跳跃次数并更新边界。该算法时间复杂度为O(n),空间复杂度为O(1),能高效解决问题。文章提供了Python实现代码、测试用例及详细解释,验证了算法的正确性。
2025-12-24 21:54:43
466
原创 并行程序设计与实现
本文展示了并行计算在数值积分和矩阵乘法中的应用,包含MPI、OpenMP和CUDA三种实现方式。基础题部分通过计算π值演示了SPMD模式下的MPI并行和OpenMP的四种并行化方法;矩阵乘法部分实现了MPI、MPI+OpenMP混合以及CUDA版本,其中CUDA实现采用共享内存优化。创新题部分基于Goto算法实现了自适应分块的CUDA矩阵乘法,通过硬件探测和评分模型自动选择最优分块参数,显著提升了GPU计算效率。所有实现均包含C和Python代码,并进行了性能分析和优化。
2025-12-23 23:54:49
843
1
原创 知识工程的逻辑基础
本文系统梳理了知识工程中的核心逻辑要素。首先阐述了命题作为原子知识单元的作用,以及全称量词和存在量词对范围性知识的表达能力。其次分析了逻辑联结词(与、或、非)在构建复合知识规则中的应用,包括运算优先级和常见运算律。然后探讨了充分必要条件在知识因果关系中的重要性,以及等价命题对概念定义的作用。最后介绍了反证法在知识库一致性校验中的应用。这些逻辑工具为知识表示、推理和验证提供了理论基础,是构建可靠知识系统的关键要素。
2025-12-23 22:28:10
2414
1
原创 知识工程:人工智能从通用求解到知识驱动的演进基石
本文系统梳理了知识工程的发展历程与核心技术。知识工程作为人工智能从通用问题求解转向知识驱动的关键转折,其发展经历了四个阶段:起步期(符号主义主导)、成长期(专家系统崛起)、快速发展期(语义网兴起)和多元化发展期(大数据与机器学习融合)。知识表示方法包括产生式规则、框架表示、状态空间和语义网络等,推理技术从经典逻辑发展为智能融合。当前知识图谱面临知识融合质量、扩展性和标准化三大挑战。随着技术进步,知识工程正推动人工智能向更高层次发展,在智能决策、自然语言理解等领域发挥重要作用。
2025-12-22 21:26:40
1249
原创 【数据结构】最短路径的求解
本文通过具体例题对比了迪杰斯特拉算法和弗洛伊德算法求解最短路径的过程。迪杰斯特拉算法采用贪心策略,逐步确定单源点到其他顶点的最短路径(时间复杂度O(n²)),但不能处理负权边。弗洛伊德算法通过动态规划求解所有顶点对的最短路径(时间复杂度O(n³)),能处理负权边但不支持负权环。两种算法在适用场景、处理能力和实现方式上存在显著差异:迪杰斯特拉适合单源点问题,弗洛伊德适用于多源点问题且实现更简洁。文中通过完整的Python代码演示了两种算法的具体实现步骤和求解过程。
2025-12-22 20:52:25
842
原创 【自然语言处理】自然语言处理驱动代码生成的精准性研究:技术演进、核心挑战与优化范式
自然语言到代码生成(NL2Code)作为NLP与软件工程交叉领域的核心技术,正通过AI编程工具重构软件开发范式。本文系统梳理了NL2Code从规则驱动、统计学习到预训练大模型的技术演进历程,重点分析了精准性这一关键指标的多维内涵(语法正确性、语义一致性等)及其评估体系。研究揭示了制约精准性的核心挑战:自然语言的模糊性、代码的强约束性、上下文感知局限性和数据偏差。针对这些问题,提出了全链路优化策略,包括输入结构化、多模态建模、约束生成和后处理验证。
2025-12-21 22:25:12
762
2
原创 【自然语言处理】自然语言理解的 “问题识别之术”
自然语言理解(NLU)技术的应用需要精准评估问题适配性、数据条件和成本约束。本文提出了一套可行性评估框架,首先明确NLU擅长处理目标明确、规则清晰的单一任务(如情感分类、自动问答等),同时指出其在主观判断、多源信息整合等复杂场景中的局限性。其次强调数据是NLU落地的关键,需评估训练数据的规模质量以及应用数据的接口可用性。最后从开发维护角度分析人力、计算资源等成本因素,提供包含五个步骤的决策流程,帮助判断是否采用NLU方案。该框架旨在避免技术滥用,确保NLU项目在能力范围内高效实施。
2025-12-21 22:00:33
801
原创 【自然语言处理】深度拆解自然语言处理(NLP)的知识体系:从理论根基到工程落地的全维度探索
本文系统阐述了自然语言处理(NLP)的知识体系框架,涵盖五大核心板块:语言学基础、数学与统计学、计算机科学与人工智能、领域特定知识和工程实践知识。文章指出,NLP是多学科交叉融合的领域,需要构建从理论到实践的完整知识链。语言学为NLP提供理解语言的规则,数学提供建模工具,计算机科学实现技术落地,领域知识实现行业适配,工程实践保障产品落地。
2025-12-20 22:54:41
738
原创 【自然语言处理】关系性形容词的特征
本文系统分析了汉语中关系性形容词的五大核心特征:1)语义依存性(必须依赖参照对象);2)语法功能受限(主要作定语);3)不能受程度副词修饰;4)不能重叠;5)语义相对性(属性随参照变化)。通过Python程序实现了自动识别与特征验证,包括预设词库分类、特征验证函数(程度副词修饰、谓语功能、重叠能力等)以及交互式测试功能。程序能准确区分关系性形容词(如"国产的")和性质形容词(如"红的"),并生成详细特征对比表。
2025-12-20 22:27:52
719
原创 【自然语言处理】共生与引领:自然语言处理与人工智能的深度绑定与协同演进
本文系统阐述了自然语言处理(NLP)与人工智能(AI)的辩证关系。首先回顾二者从规则驱动到深度学习的发展历程,揭示其技术同频共振的演进规律。从技术内核看,NLP既是AI认知智能的核心载体,也是实现通用智能的关键路径。在应用层面,二者深度融合重构了智能助手、金融风控、舆情监测等多元场景。当前共同面临语言复杂性、数据偏见等挑战,未来将朝向多模态融合、通用智能深化方向发展。文章指出,NLP与AI呈现"技术共生、需求互驱"的辩证统一关系,其协同发展将持续推动智能时代的范式革新。
2025-12-19 23:06:29
1105
原创 【自然语言处理】自然语言处理(NLP)的全景应用:从生活便利到产业革新的全维度渗透
本文系统梳理了自然语言处理(NLP)技术的发展与应用全景。从技术演进看,NLP经历了规则驱动、统计学习到大语言模型的三个阶段,实现了从专用智能向通用智能的跨越。在应用层面,NLP已深度融入生活服务(智能交互、信息推荐)、产业赋能(金融风控、医疗诊断)、社会治理(舆情监测、智慧政务)和科研创新(文献分析、知识挖掘)四大领域,显著提升了社会运行效率。尽管面临语言歧义性、数据偏见、可解释性不足等挑战,未来NLP将朝着多模态融合、通用语言智能、低资源语言处理等方向发展。
2025-12-19 20:57:22
1230
原创 【自然语言处理】汉字表管理工具
本文介绍了一个功能全面的汉字表管理工具CharTableMapper,该Python类实现了汉字表从初始化、数据关联、批量操作到版本控制的全生命周期管理。核心功能包括:汉字去重与索引映射、拼音/笔画等关联数据管理、批量替换与拼音修正、版本快照与回滚、生僻字识别与编码分析,以及多格式导入导出(TXT/CSV/Excel/JSON)。工具支持操作日志记录、差异对比和可视化图表生成,适用于教育、文字处理、编码分析等场景。测试代码验证了所有功能模块,展示了完整的汉字表管理流程。
2025-12-18 23:49:53
851
原创 【自然语言处理】中文文本文件编码自动判别
本文介绍了中文文本文件编码自动判别的实现方法。通过分析BOM标记、按优先级顺序解码验证(UTF-8→GBK→GB18030→Big5→UTF-16),并结合有效中文字符比例校验,可准确识别常见中文编码格式。文章提供了纯Python内置库版本和基于chardet的增强版两种实现方案,均采用文件头部采样(4KB/10KB)处理大文件,避免内存溢出。核心逻辑包括BOM检测、严格模式解码、有效字符统计等步骤,能够有效区分UTF-8、GBK等编码并过滤乱码情况。
2025-12-18 01:16:10
867
4
原创 【自然语言处理】处理 GBK 编码汉字的算法设计
本文介绍了一个处理GBK编码汉字的Python工具类GBKHandler,实现了GBK编码与解码、合法性校验、批量过滤和文件读写功能。该工具类采用双重容错机制:优先使用Python内置方法处理,失败时提供手动解析兜底;支持大文件分块处理避免内存溢出;严格遵循GBK编码规则(ASCII单字节、汉字双字节)。核心功能包括字符串与GBK字节流的双向转换、有效GBK字符识别、非GBK字符过滤,以及文件的GBK编码读写操作。通过示例展示了各类场景下的使用方法,验证了编码解码的正确性和容错性。
2025-12-17 18:46:14
1053
2
原创 【自然语言处理】中文文本字频统计与交互式可视化工具
本文介绍了一个中文文本字频统计与交互式可视化工具的完整开发流程。该工具支持GB级大文本处理,通过分块读取和多线程技术实现高效统计,能够分析单字频率、双字组合频率,并提供多文本对比功能。系统采用模块化设计,包含文本预处理、频率统计、可视化等核心模块,解决了中文显示、跨平台兼容等关键技术问题。可视化部分使用Plotly生成交互式图表,包括词云、热力图、关联网络等多种形式。工具具有易用性强、性能优异的特点,适用于中文文本分析、数据挖掘等应用场景。
2025-12-17 01:42:44
1189
原创 【自然语言处理】单字与双字字频统计算法设计
本文提出一个同时实现单字和双字字频统计的算法。算法流程包括:文本预处理(正则提取纯汉字)、单字统计(遍历计数)、双字统计(滑动窗口截取双字对)、多维度可视化(6类图表展示结果)。核心功能是通过正则过滤非汉字字符,分别统计单字和连续双字的出现频次,并生成条形图、词云、热力图等可视化结果。该算法适用于中小规模中文文本分析,可输出高清统计图表和控制台结果,为中文文本研究提供直观的数据支持。
2025-12-16 21:36:11
840
原创 【自然语言处理】字符编码与字频统计:中文信息处理的底层逻辑与实践维度
本文围绕 “字符编码与字频统计是中文信息处理的底层基石” 展开,核心内容:西文字符编码的奠基、中文编码的演进、字符编码的实践价值和字频统计的作用与方法,本文最后指出,这两项底层技术是中文从纸质文字转向数字语言的桥梁,将持续支撑中文 AI 的发展。
2025-12-16 20:26:08
816
登山赛车游戏基于 Pygame 开发,是一个包含物理模拟、关卡系统、养成系统、交互 UI的完整休闲游戏
2025-12-28
红黑树的可视化工具-红黑树的动画展示
2025-10-01
### 机器学习基于SVM的分类预测实验报告:芝加哥出租车出行支付方式预测与分析
2025-06-12
编译原理基于属性文法的C++编译器设计:词法、语法及语义分析与中间代码生成
2025-06-12
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅