2024 年年度最佳开源软件

https://minikube.sigs.k8s.io/

d6bfb43f567f547e6da76d9445d7fb4d.png

Minikube 可以在本地单机上运行Kubernetes集群的工具。Minikube可跨平台工作,不需要虚拟机,不需要在MacOS或Windows上安装Linux。支持多种容器,如Docker,CRI-O,Containerd等。

Pixie

=====

https://px.dev

4a6812ccada57d6b3a5904329ad14b95.png

Pixie是查看Kubernetes的工具。可查看Kubernetes集群的状态,比如,服务器集群性能,网络状况,集群资源已经相关应用程序等。还可以查看更详细的内容,比如,pod状态,请求量,热点图等。Pixie的资源占用仅有5%左右。

FastAPI

=======

https://fastapi.tiangolo.com/

13db1db2a2f73d6df79821973fca9fe3.png

FastAPI是一个Python网页框架。FastAPI以其高效、易用赢得了开发者的青睐,直接挑战了Django和Flash的传统地位。FastAPI的优点是,类型检查、自动 swagger UI、支持异步、强大的依赖注入。

Crystal

=======

https://crystal-lang.org/

93d1852a072a81ef09cb75ce827bee8d.png

Crystal已经面试很多年了,Crystal的特点是兼具C语言的高效和Ruby的静态类型。今年初已经发布了1.0版本,目前最新版本为1.2.1,已经足够稳定。

Microsoft Terminal

==================

https://github.com/Microsoft/Terminal

c1214d2f8bf6aa9fdc3d715f279519ce.png

Microsoft Terminal 是一个开源的Windows的终端,提供类似Mac和Linux命令行的体验。Microsoft Terminal具有GPU加速渲染,较传统控制台具有更好的性能提升。

OBS Studio

==========

https://obsproject.com/

9074ffcdcc5728b859ba9b5c61fe7a2f.png

OBS Studio 是一款用于直播和屏幕录制的软件,为高效捕获,合成,编码,记录和流传输视频内容而设计,支持所有流媒体平台。快捷键可让试图平滑切换,甚至还有画中画和实时字幕的新功能。

Shotcut

=======

https://shotcut.org/

4366a3fe433ffabf1e3825c8f6ac9bdb.png

Shotcut是一个强大的视频编辑工具。Shotcut具有中文版支持,可在Windows,MacOS,Linux,BSD等操作系统上运行,Shotcut具有数百种音频、视频格式,以及编解码器,且无需导入,可直接编辑。

Weave GitOps

============

https://github.com/weaveworks/weave-gitops

0ddcbbb3996ae99d1e0bb3b1525bfd02.png

Weave GitOps 是一个GitOps工具。其目的是简化DevOps的工作流程,通过声明配置使Kubernetes更加稳定和安全。Weave GitOps 基于 云原生基金会的 Flux。

Apache Solr

===========

https://solr.apache.org/

f72be5532bfbaa71aebcbb5b9aa6e3c4.png

Apache Solr 是基于 Lucene 的全文搜索服务器,也是最流行的企业级搜索引擎。Solr 放弃了开源的许可证,不过现在仍然是免费的。Solr 可集群部署、可在云端部署,甚至包括 LTR 算法,可自动调整加权结果。

MLflow

======

https://mlflow.org/

b3faddcc2a39d4fced2f7fd4f52570a0.png

MLflow 是由 Apache Spark 技术团队开源的一个机器学习平台。MLflow 由 Databricks 创建,并由 Linux 基金会托管,是一个 MLOps 平台,可让用户跟踪、管理和维护各种机器学习模型、实验及其部署。MLflow提供了记录和查询实验(代码、数据、配置、结果)的工具,将数据科学代码打包成项目,并将这些项目接入工作流程。

Orange

======

https://orangedatamining.com/

6d63730993712f07cb950b2128f40e4c.png

Orange 是一款用于开源机器学习和数据可视化的工具。Orange与 R Studio 和 Jupyter等程序化或文本工具相比,Orange 更直观易操作。Orange 包含了完整的一系列的组件以进行数据预处理,并提供了数据帐目,过渡,建模,模式评估和勘探的功能。

Flutter

=======

https://flutter.dev/

591dd6b6ba0aa5c43f9c13dca5ffb31b.png

Flutter是谷歌推出的一个新用于构建跨平台的手机、网页、桌面,嵌入式设备应用的SDK。Flutter 的组件,比如,滚动条、导航、图标和字体,整合了IOS和安卓平台的差异。

Apache Superset

===============

https://github.com/apache/superset

f682eccabde631a0992a2af5ba0e6c99.png

Apache Superset是一个现代的、轻量级可视化BI分析工具。Apache Superset在可视化、易用性和交互性上非常有特色,用户可以轻松对数据进行可视化分析。而且Apache Superset 已经达到企业级商业软件的水平。

Presto

======

https://prestodb.io/

05d1a3746939699ef33ae6f1d4bcee4e.png

Presto 是一个开源的分布式 SQL 引擎,用于集群中的在线分析处理。Presto 可以查询各种各样的数据源,从文件到数据库,并将结果输出到BI和分析环境。更重要的是,Presto 可以在 Hive、Cassandra、关系型数据库中进行查询,而且Presto 还可以结合多个来源的数据查询。

脸书、Uber、推特和阿里巴巴创立了 Presto 基金会。其他成员现在包括 Alluxio、Ahana、Upsolver 和英特尔。

Apache Arrow

============

https://arrow.apache.org/

dcffda4356ebc06a180bb0bf258f160f.png

Apache Arrow 是一个列式内存分析层,旨在为CPU和GPU上加速大数据的分析。它包含了一套平面和分层数据的典型内存表示,Arrow 内存格式支持零拷贝读取,并且不必序列化的情况下访问数据极快。目前Apache Arrow支持的语言包括 C、C++、C#、Go、Java、JavaScript、Julia、MATLAB、Python、R、Ruby 和 Rust。

InterpretML

===========

https://interpret.ml/

1ec5bd4e32ed758482ee9b9a6c8fa340.png

InterpretML是微软推出的可解释机器学习包。其中包含了几个最先进的机器学习可解释性技术。InterpretML提供了两类解释性类型:明箱(glassbox) 模型和黑箱(blackbox)模型。InterpretML 可让实践者通过在一个统一的 API 下,借助内置的可扩展可视化平台,使用多种方法来轻松地比较可解释性算法。InterpretML 也包含了可解释 Boosting 机(EBM)的首个实现,这是一种强大的可解释明箱模型,可以做到与许多黑箱模型同等准确。

Lime

====

https://github.com/marcotcr/lime

42aa7620358bbb80580fdea0fcaa508b.png

Lime(Local interpretable model-agnostic explanations 局部可解释模型-不可知解释的缩写),Lime用于表格或图片的解释机器学习的分类器。Lime 能够解释两个或更多类的黑盒分类器。分类器实现了一个函数,该函数接收原始文本或 numpy 数组并输出每个类的概率。

Dask

====

https://dask.org/

d9b9d437765dd18b4d6b13209f90065d.png

Dask 是一个用于并行计算的开源库,可将 Python 包扩展到多台机器上。Dask 可将数据和计算分布在多个 GPU 上,即可在单一系统也可在多节点集群中运行。Dask 可与 Rapids cuDF、XGBoost 和 Rapids cuML 集成,用于 GPU 加速的数据分析和机器学习。Dask还可与 NumPy、Pandas 和 Scikit-learn 集成进行并行化工作。

BlazingSQL

==========

https://blazingsql.com/

0c456459aec6580586bf56982d0634b8.png

BlazingSQL 是一个基于 Rapids 生态系统构建的 GPU 加速 SQL 引擎。BlazingSQL基于 Apache 2.0 许可证开源。BlazingSQL是cuDF的SQL接口,具有支持大规模数据科学工作流(包括提取,转换,加载)和企业数据集的各种功能。

Rapids

======

https://rapids.ai/

31a930b70c1b95f75a260d2dece571af.png

Nvidia 的 Rapids是由英伟达开源的一款开源机器学习GPU加速平台。Rapids 使用英伟达 CUDA 基元进行底层计算优化,通过Python 将 GPU 的并行和高带宽内存以接口方式向外开放。Rapids 依赖于 Apache Arrow 柱状内存格式,包括cuDF(类似 Pandas 的 DataFrame 库);cuML(机器学习库集合,提供 Scikit-learn 中大多数算法的 GPU 版本);以及cuGraph(类似 NetworkX 的加速图分析库)。

PostHog

=======

最后

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数初中级Android工程师,想要提升技能,往往是自己摸索成长,自己不成体系的自学效果低效漫长且无助。

因此收集整理了一份《2024年Web前端开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。

img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Android开发知识点!不论你是刚入门Android开发的新手,还是希望在技术上不断提升的资深开发者,这些资料都将为你打开新的学习之门!

如果你觉得这些内容对你有帮助,需要这份全套学习资料的朋友可以戳我获取!!

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
691838)]

[外链图片转存中…(img-drdOhiYz-1715282691839)]

[外链图片转存中…(img-1JRHIRJR-1715282691839)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Android开发知识点!不论你是刚入门Android开发的新手,还是希望在技术上不断提升的资深开发者,这些资料都将为你打开新的学习之门!

如果你觉得这些内容对你有帮助,需要这份全套学习资料的朋友可以戳我获取!!

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值