先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip204888 (备注大数据)
正文
"query" : {
"bool" : {
"filter" : {
"range" : {
"price" : {
"gte": 1000
}
}
}
}
},
"script": {
"source": "cosineSimilarity(params.queryVector, 'product-vector') + 1.0",
"params": {
"queryVector": [-0.5, 90.0, -10, 14.8, -156.0]
}
}
}
}
}
#### 语义检索
es所谓的语义检索即是自带的模型以及向量检索,es提供了一些NLP模型,包括密集向量和稀疏向量的,如果进行中文搜索,需要自己上传配置模型。提高语义检索的通常步骤是选择一个效果较好的通用模型,积累语料,对模型进行训练,优化效果。但训练的成本并不低,为了提供一个通用简便的使用,es提供了一种稀疏向量编码器[ELSER]( ),开箱即用,尽量减少微调,目前仅适用于英语。
简单来说,语义检索就是将模型编码的工作也交给了es,不需要我们提前编码好再发送给es进行距离计算。包括部署模型、创建向量字段、生成嵌入向量、检索数据四个步骤。这个功能不免费,具体可以查看[官方文档]( )。
### 倒数融合排序(RRF)
rrf用于将多个检索结果集合并为一个按照rrf\_score排序的结果集。通常情况下组合多种排名方法比单个排名具有更好的效果,例如全文检索BM25排名 和密集向量相似度排名。 **本质上就是将多个有序结果集组合成一个单一的有序结果集。 理论上可以将每个结果集的分数归一化(因为原始分数在完全不同的范围内),然后进行线性组合,根据每个排名的分数加权和排序最终结果集,这种方法需要提供正确的权重,了解每种方法得分的统计分布,并能根据实际情况优化权重**,这并不简单。
另一种方法是rrf算法,相比优化每种排序方法的权重,rrf相对简单粗暴,不利用相关分数,而仅靠排名计算,绕开了不同方法得分统计分布的影响。rrf\_score的计算公式如下
R
R
F
s
c
o
r
e
(
d
∈
D
)
=
∑
r
∈
R
1
k
+
r
(
d
)
RRFscore(d \in D) = \sum\_{r \in R} \frac{1}{k+r(d)}
RRFscore(d∈D)=r∈R∑k+r(d)1
* D,查询的文档结果集,例如BM25排序后的结果集,向量检索后的结果集。
* R,查询的文档结果集的排序序列,
1
,
2
,
3...
N
1,2,3...N
1,2,3...N,
r
(
d
)
r(d)
r(d)表示文档在结果集中的排名。
* k,每个查询的单个结果集中的文档对最终排名结果集的影响程度。 较高的值表示排名较低的文档具有更大的影响力。 此值必须大于或等于 1。默认为 60。
计算过程就是对每组结果集的每个文档,为计算rrf\_score并累加,最后按rrf\_score排序文档。
假定k=10,以下是一个排序示例。
| 文档 | BM25相关性排名 | 密集向量相关性排名 | BM25 rrf\_score | 密集向量rrf\_score | 按rff\_score总分排名 |
| --- | --- | --- | --- | --- | --- |
| A | 1 | 3 |
1
1
+
10
=
1
11
\frac{1}{1+10}=\frac{1}{11}
1+101=111 |
1
3
+
10
=
1
13
\frac{1}{3+10}=\frac{1}{13}
3+101=131 | 1 |
| B | - | 2 | - |
1
10
+
2
=
1
12
\frac{1}{10+2}=\frac{1}{12}
10+21=121 | 3 |
| C | 3 | 1 |
1
3
+
10
=
1
13
\frac{1}{3+10}=\frac{1}{13}
3+101=131 |
1
1
+
10
=
1
11
\frac{1}{1+10}=\frac{1}{11}
1+101=111 | 1 |
| D | 2 | 4 |
1
2
+
10
=
1
12
\frac{1}{2+10}=\frac{1}{12}
2+101=121 |
1
4
+
10
=
1
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)**
![img](https://img-blog.csdnimg.cn/img_convert/ae219142b09c95f72718aff11594f82c.png)
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
10
=
1
12
\frac{1}{2+10}=\frac{1}{12}
2+101=121 |
1
4
+
10
=
1
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)**
[外链图片转存中...(img-lpl4TjN9-1713282808197)]
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**