使用 Docker 搭建 Hadoop 分布式环境_windows系统docker怎么搭建hadoop框架

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

安装报错

如果 Docker Desktop 安装过程中出现如下错误:

在这里插入图片描述

直接点击报错信息中的链接,更新 Linux 内核即可,

点击链接后进入如下页面

在这里插入图片描述

下载这个 WSL2 Linux kernel update package for x64 machines 升级包,并安装之后点击 Docker desktop 安装报错提示框中的 Restart,就能顺利安装完成并启动了。

启动运行 Docker

安装完成之后,桌面可以看到 Docker desktop 快捷方式,双击启动,启动成功之后会在 Windows 任务栏出现如下图的鲸鱼图标。

在这里插入图片描述

这时就可以在 PowerShell 使用 Docker 命令使用 Docker 了

在这里插入图片描述

国内镜像加速

国内从 Docker Hub 拉取镜像有时会遇到困难,此时需要配置国内镜像源进行加速

Windows 安装的 Docker Desktop 配置十分简单,只需要在任务栏托盘 Docker 图标内右键菜单选择 Settings,打开配置窗口后在左侧导航菜单选择 Docker Engine,在右侧像下边一样编辑 json 文件,之后点击 Apply & Restart 保存后 Docker 就会重启并应用配置的镜像地址了。

{
  "registry-mirrors": [
    "https://hub-mirror.c.163.com",
    "https://mirror.baidubce.com"
  ]
}

配置完成之后,在 PowerShell 使用 docker info 命令,如果控制台输出如下内容,说明配置成功

Registry Mirrors:
 https://hub-mirror.c.163.com/

02 下载 Hadoop 镜像

创建 Hadoop 容器我们需要合适的 Hadoop 镜像,这里我们使用 Github 上高赞的 docker-hadoop 镜像,使用如下命令将镜像克隆到本地

git clone https://github.com/big-data-europe/docker-hadoop.git

然后进入到 docker-hadoop 目录下运行

docker-compose up -d

下载 hadoop 镜像并创建容器。

在这里插入图片描述

该命令执行完成之后使用 docker container ls 命令查看被启动的容器,我们可以看到如下 5 个节点

在这里插入图片描述

Hadoop 集群被成功启动后,可以通过如下 URL 访问各节点

Namenode: http://<dockerhadoop_IP_address>:9870/dfshealth.html#tab-overview
History server: http://<dockerhadoop_IP_address>:8188/applicationhistory
Datanode: http://<dockerhadoop_IP_address>:9864/
Nodemanager: http://<dockerhadoop_IP_address>:8042/node
Resource manager: http://<dockerhadoop_IP_address>:8088/

通过浏览器访问 Namenode 可以看到如下 Hadoop 集群管理页面

在这里插入图片描述

增加数据节点

到这里 Hadoop 集群已经创建完成了,如果想增加节点,可以通过修改 docker-hadoop 中的 docker-compose.yml 文件来实现。

例如,我们给当前集群增加两个数据节点 datanode 对 docker-compose.yml 文件修改如下:

datanode:
    image: bde2020/hadoop-datanode:2.0.0-hadoop3.2.1-java8
    container\_name: datanode
    restart: always
    volumes:
      - hadoop_datanode:/hadoop/dfs/data
    environment:
      SERVICE\_PRECONDITION: "namenode:9870"
    env\_file:
      - ./hadoop.env
  datanode2:
    image: bde2020/hadoop-datanode:2.0.0-hadoop3.2.1-java8
    container\_name: datanode2
    restart: always
    volumes:
      - hadoop_datanode2:/hadoop/dfs/data
    environment:
      SERVICE\_PRECONDITION: "namenode:9870"
    env\_file:
      - ./hadoop.env
  datanode3:
    image: bde2020/hadoop-datanode:2.0.0-hadoop3.2.1-java8
    container\_name: datanode3
    restart: always
    volumes:
      - hadoop_datanode3:/hadoop/dfs/data
    environment:
      SERVICE\_PRECONDITION: "namenode:9870"
    env\_file:
      - ./hadoop.env 

然后重新执行 docker-compose up -d 增加节点

03 测试 Hadoop 集群

测试准备

我们使用简单的词频统计 mapreduce 任务来测试 Hadoop 集群

首先下载 hadoop-mapreduce-examples jar 包

然后使用如下命令将这个 jar 包拷贝到 namenode 节点

docker cp .\hadoop-mapreduce-examples-2.7.1.jar namenode:/tmp/

然后我们创建一个 input.txt 测试文件,并输入文字内容

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

真正的技术提升。**

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值