多项式加法
图解算法原理
为了将两个多项式相加,从 a 和 b 所指向的结点开始比较两个多项式的各个项。如果这两项的指数相同,那么把它们的系数相加,并生成一个新的结果项,然后移动这两个指针,分别指向多项式 a 和 b 的下一个结点。如果 a 的当前项指数小于 b 的当前项指数,那么生成 b 的副本项,加入到结果 d 中,并移动指针指向 b 的下一项。如果 a−>expon>b−>expon,那么对 a 采取同样的操作。
多项式的处理过程如下所示:
**第一步:**a−>expon==b−>expon
**第二步:**a−>expon<b−>expon
**第三步:**a−>expon>b−>expon
后面的情况处理方法相同,这里就不一一展开说明了
新结点的生成
每次生成一个新结点,设置它的 coef 域和 expon 域,并将它添加到 d 的尾部,为了避免每次加入新结点时都搜索 d 的最后结点,使用函数 rear 指向 d 中最后的结点。
参考代码
void attach(float coefficient,int exponent,poly_pointer *ptr) { poly_pointer temp; temp=(poly_pointer) malloc(sizeof(poly_node)); temp->coef=coefficient; temp->expon=exponent; (*ptr)->link=temp; *ptr=temp; }
多项式加法参考代码
poly_pointer padd(poly_pointer a,poly_pointer b) { poly_pointer front, rear, temp; int sum; rear=(poly_pointer) malloc(sizeof(poly_node)); front=rear; while(a&&b) switch(COMPARE(a->expon,b->expon)){ case-1://a->expon<b->expon attach(b->coef,b->expon,&rear); b=b->link; break; case 0://a->expon=b->expon sum=a->coef+b->coef; if(sum) attach(sum,a->expon,&rear); a=a->link;b=b->link; break; case 1://a->expon>b->expon attach(a->coef,a->expon,&rear); a=a->link; } //复制链表 a 的其余部分,然后复制链表 b for(;a;a=a->link) attach(a->coef,a->expon,&rear); for(;b;b=b->link) attach(b->coef,b->expon,&rear); rear->link=NULL; //删除额外的初始节点 temp=front;front=front->link;free(temp); return front; }
多项式结点的删除
链表非常适合用于多项式的操作,利用链表作为链表存储表示,可以更方便的写出多项式的输入,输出,加法,减法和乘法等操作函数。如果需要操作更多的多项式,那么回收用于表示多项式的结点是很有必要的。通过回收结点,还可以利用它来保存其他的多项式。
参考代码
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!