网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
状态在分布式系统中:速度慢,但可靠性高
特点:
高吞吐和低延迟:
每秒处理数百万个事件,毫秒级延迟
结果的准确性:
Flink提供了事件时间(event-time) 和处理时间(processing-time)语义。对于乱序事件流,事件时间语义仍然能提供一致且准确的结果
精确一次(exactly-once)的状态一致性保证
可以连接到最常用的存储系统:
Kafka,Hive,JDBC,HDFS,Redis等
高可用:
本身高可用的设置,加上与 K8s,YARN和Mesos的紧密集成,再加上从故障中快速恢复和动态扩展任务的能力,Flink能做到以极少的停机时间7*24全天候运行
Flink和SparkStreaming比较
本质:spark streaming是批处理(RDD模型),flink是流处理
Flink | Streaming | |
计算模型 | 流计算 | 微批处理 |
时间语义 | 事件时间,处理时间 | 处理时间 |
窗口 | 多,灵活 | 少,不灵活(窗口必须是批次的整数倍) |
状态 | 有 | 无 |
流式sql | 有 | 无 |
ps:
Flink提供了三种时间语义,以满足不同计算场景的需求:处理时间,事件时间和注入时间。
- 处理时间(Processing Time):一种直观的时间语义,表示数据进入算子并开始处理的实际时间点。
- 事件时间(Event Time):表示事件实际发生的时间,通常在消息的时间戳字段中找到。由于可能会有数据乱序的问题,但它能保证精确度高的计算场景。
- 注入时间(Ingestion Time):介于处理时间和事件时间之间的折中选择,代表数据进入Flink处理系统的时间。
Flink分层API
最高层 | SQL(最好用) |
声明式领域专用语言 | Table API(像表一样处理数据,还不够好用) |
核心APIs | DataStream(数据流,流计算,高版本一般都用流计算) / DataSet API(数据集,批处理) |
底层APIs(处理函数) | 有状态流处理 |
有状态流处理:
通过底层API(处理函数),对最原始数据加工处理。底层API与DataStream API相集成,可以处理复杂的计算
DataStream API(流处理) 和 DataSet API(批处理)
封装了底层处理函数,提供了通用的模块,比如转换(transformations,包括map,flatmap等) ,连接(join),聚合(aggregations),窗口(windows)操作等。
注意:Flink1.12以后,DataStream API已经实现真正的批流一体,所以DataSet API已经过时
Table API
以表未中心的声明式编程,其中表可能会动态变化。 Table API遵循关系模型:表有二维数据结构,类似于关系数据库中的表;同时API提供可比较的操作,例如:select,project,group-by,aggregate等。 我们可以在表与 DataStream / DataSet之间无缝切换,以允许程序将Table API 与DataStream / DataSet 混合使用
SQL
这一层在语法与表达能力上与Table API类似,但是以SQL查询表达式的形式表现程序。
SQL抽象与Table API交互密切,同时SQL查询可以直接在Table API定义的表上执行
Flink快速上手
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java</artifactId>
<version>1.17.0</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_2.10</artifactId>
<version>1.17.0</version>
</dependency>
看视频吧,不同的引包写法有差异
Flink集群部署
组件流程介绍
flink提交作业和执行任务,需要几个关键组件:
客户端(client):代码由客户端获取并作转换,之后提交给 jobManager
JobManager:就是flink集群里的“管事人”,对作业进行中央调度管理;而它获取到要执行的作业后,会进一步处理转换,然后分发任务给众多的TaskManager
TaskManager:就是真正“干活的人”,数据的处理操作都是它们来做的
注意:
流程:
Flink Client -> 一个JobManager(协调调度中心) -> N个TaskManager(工作节点)
多个备用 JobManager
Flink是一个非常灵活的处理框架,它支持多种不同的部署场景,还可以和不同的资源管理平台方便地集成
集群搭建:
集群规划:
节点服务器 | hadoop102 | hadoop103 | hadoop104 |
角色 | JobManager,TaskManager | TaskManager | TaskManager |
下载解压安装包
eg:flink-1.17.0-bin-scala_2.12.tgz
vim flink-conf.yaml
jobmanager.rpc.address: hadoop102 (rpc连接的地址)
jobmanager.bind-host: 0.0.0.0 (任何机器都可以访问)
rest.address: hadoop102 (Rest Api访问地址)
rest.bind-address: 0.0.0.0
taskmanager.bind-host: 0.0.0.0
taskmanager.host: hadoop102 (不同服务器配置相应的ip)
还可更改
jobmanager.rpc.port:6123
jobmanager.memory.process.size:48g (jobmanager进程可使用的全部内存,包括JVM和其他开销,默认1600M)
taskmanager.memory.process.size:8g (taskmanager进程可使用的全部内存,包括JVM和其他开销,默认1728M)
taskmanager.numberOfTaskSlots: 24 (对每个taskmanager能够分配的slot数量进行配置,默认1,可根据cpu进行决定)
parellelism.default: 8 # 并行数量,默认1,优先级低于代码中进行的并行度配置
high-availability: zookeeper
high-availability.storageDir: ftp://sjsy:chianoly@139.6.0.224:6600/flink/ha/
high-availability.zookeeper.quorum: zk01:2181,zk02:2181,zk03:2181
jobmanager.execution.failover-strategy: region
#历史服务器
jobmanager.archive.fs.dir: ftp://sjsy:chianoly@139.6.0.224:6600/flink/completed-jobs/
historyserver.web.address: 0.0.0.0
historyserver.web.port: 8082
historyserver.archive.fs.dir: ftp://sjsy:chianoly@139.6.0.224:6600/flink/completed-jobs/
heartbeat.timeout: 180000
akka.ask.timeout: 60s
web.timeout: 1000000
state.checkpoints.num-retained: 3
vim workers
hadoop102
hadoop103
hadoop104
vim masters(jobmanager)
hadoop102:8081
//可以多个
hadoop105:8081
hadoop106:8081
...
命令行启动(也可以手动上传)
1 上传
2
bin/flink run -m hadoop102:8081 -c com.chinaoly.wc.WordCountStream ./FlinkTutorial-1.17-1.0-SNAPSHOT.jar
-m :后面跟 jobmanager的ip端口
-c : 后面跟全类名
最后,相对路径或者绝对路径
部署模式
会话模式(Session Mode
单作业模式(Per-Job Mode)
应用模式(Application Mode)
会话模式(Session Mode)
最符合常规思维,我们先启动一个集群,保持一个会话,在这个会话中通过客户端提交作业。
集群启动时所以资源都已经确定,所以所有提交的作业会竞争集群中的资源。
会话模式比较适用于: 单个规模小,执行时间短的大量作业
单作业模式(Per-Job Mode)
会话模式因为资源共享会导致很多问题,所以为了更好地隔离资源,我们可以考虑为每个提交的作业启动一个集群,这就是所谓的单作业模式
作业完成后,集群就会关闭,所以资源也会释放
这些特性使得单作业模式在生产环境运行中更加稳定,所以是 实际应用的首选模式
需要注意:Flink本身无法直接这样允许,所以单作业模式一般需要借助一些资源管理框架来启动集群,比如 YARN,Kubernates(K8S)
应用模式(Application Mode)
前面提到的两种模式下,应用代码都是在客户端执行,然后由客户端提交到JobManager的。但是这种方式客户端需要占用大量网络带宽,去下载依赖和把二进制数据发送给JobManager;加上很多情况下我们提交作业用的是同一个客户端,就会加重客户端所在节点的资源消耗。
所以解决方法是: 我们不要客户端了,直接把应用提交到JobManager上运行。 而这也就代表着,我们需要为每一个提交的应用单独启动一个JobManager,也就是创建一个集群。这个JobManager只为执行一个应用而存在,执行结束后JobManager也就关闭了。这就是所谓的应用模式。
应用模式与单作业模式,都是提交作业后才创建集群;单作业模式是通过客户端来提交的,客户端解析出的每一个作业对应一个集群;而应用模式下,是直接由JobManager执行应用程序的。
运行模式
standalone运行模式
yarn运行模式
K8S运行模式
独立(Standalone)运行模式
独立模式是独立运行的,不依赖任何外部的资源管理平台;当然独立也是有代价的: 如果资源不足,或者出现故障,没有自动扩展或重分配资源的保证,必须手动处理,所以独立模式一般只使用在开发测试或者作业非常少的情景下。
此模式Flink自己管理资源
比如页面提交运行,打包成一个完成的jar,命令运行等。
会话模式 | 支持,默认 |
单作业模式 | 不支持,单作业模式需要借助一些资源管理平台 |
应用模式 | 可是实现,应用模式下不会提前创建集群,所以不能调用start-cluster.sh脚本。我们可以使用同样在bin目录下的standalone-job.sh来创建一个JobManager |
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
[外链图片转存中…(img-xAzRK79v-1715467480149)]
[外链图片转存中…(img-w5geb8oy-1715467480149)]
[外链图片转存中…(img-vRPuf81A-1715467480149)]
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新