最全Flink 大数据 学习详情,2024年最新送大厂面经一份

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

状态在分布式系统中:速度慢,但可靠性高

特点:

高吞吐和低延迟:

每秒处理数百万个事件,毫秒级延迟

结果的准确性:

Flink提供了事件时间(event-time) 和处理时间(processing-time)语义。对于乱序事件流,事件时间语义仍然能提供一致且准确的结果

精确一次(exactly-once)的状态一致性保证
可以连接到最常用的存储系统:

Kafka,Hive,JDBC,HDFS,Redis等

高可用:

本身高可用的设置,加上与 K8s,YARN和Mesos的紧密集成,再加上从故障中快速恢复和动态扩展任务的能力,Flink能做到以极少的停机时间7*24全天候运行

Flink和SparkStreaming比较

本质:spark streaming是批处理(RDD模型),flink是流处理

FlinkStreaming
计算模型流计算微批处理
时间语义事件时间,处理时间处理时间
窗口多,灵活少,不灵活(窗口必须是批次的整数倍)
状态
流式sql

ps:

Flink提供了三种时间语义,以满足不同计算场景的需求:处理时间,事件时间和注入时间。

  • 处理时间(Processing Time):一种直观的时间语义,表示数据进入算子并开始处理的实际时间点。
  • 事件时间(Event Time):表示事件实际发生的时间,通常在消息的时间戳字段中找到。由于可能会有数据乱序的问题,但它能保证精确度高的计算场景。
  • 注入时间(Ingestion Time):介于处理时间和事件时间之间的折中选择,代表数据进入Flink处理系统的时间。

Flink分层API

最高层SQL(最好用)
声明式领域专用语言Table API(像表一样处理数据,还不够好用)
核心APIsDataStream(数据流,流计算,高版本一般都用流计算) / DataSet API(数据集,批处理)
底层APIs(处理函数)有状态流处理
有状态流处理:

通过底层API(处理函数),对最原始数据加工处理。底层API与DataStream API相集成,可以处理复杂的计算

DataStream API(流处理) 和 DataSet API(批处理)

封装了底层处理函数,提供了通用的模块,比如转换(transformations,包括map,flatmap等) ,连接(join),聚合(aggregations),窗口(windows)操作等。

注意:Flink1.12以后,DataStream API已经实现真正的批流一体,所以DataSet API已经过时

Table API

以表未中心的声明式编程,其中表可能会动态变化。 Table API遵循关系模型:表有二维数据结构,类似于关系数据库中的表;同时API提供可比较的操作,例如:select,project,group-by,aggregate等。 我们可以在表与 DataStream / DataSet之间无缝切换,以允许程序将Table API 与DataStream / DataSet 混合使用

SQL

这一层在语法与表达能力上与Table API类似,但是以SQL查询表达式的形式表现程序。

SQL抽象与Table API交互密切,同时SQL查询可以直接在Table API定义的表上执行

Flink快速上手

		<dependency>
			<groupId>org.apache.flink</groupId>
			<artifactId>flink-streaming-java</artifactId>
            <version>1.17.0</version>
		</dependency>
		<dependency>
			<groupId>org.apache.flink</groupId>
			<artifactId>flink-clients_2.10</artifactId>
            <version>1.17.0</version>
		</dependency>

看视频吧,不同的引包写法有差异

Flink集群部署

组件流程介绍

flink提交作业和执行任务,需要几个关键组件:

客户端(client):代码由客户端获取并作转换,之后提交给 jobManager

JobManager:就是flink集群里的“管事人”,对作业进行中央调度管理;而它获取到要执行的作业后,会进一步处理转换,然后分发任务给众多的TaskManager

TaskManager:就是真正“干活的人”,数据的处理操作都是它们来做的

注意:

流程:

Flink Client -> 一个JobManager(协调调度中心) -> N个TaskManager(工作节点)

多个备用 JobManager

Flink是一个非常灵活的处理框架,它支持多种不同的部署场景,还可以和不同的资源管理平台方便地集成

集群搭建:
集群规划:
节点服务器hadoop102hadoop103hadoop104
角色JobManager,TaskManagerTaskManagerTaskManager
下载解压安装包

eg:flink-1.17.0-bin-scala_2.12.tgz

vim flink-conf.yaml

jobmanager.rpc.address: hadoop102 (rpc连接的地址)
jobmanager.bind-host: 0.0.0.0 (任何机器都可以访问)
rest.address: hadoop102 (Rest Api访问地址)
rest.bind-address: 0.0.0.0

taskmanager.bind-host: 0.0.0.0
taskmanager.host: hadoop102 (不同服务器配置相应的ip)


还可更改
jobmanager.rpc.port:6123
jobmanager.memory.process.size:48g (jobmanager进程可使用的全部内存,包括JVM和其他开销,默认1600M)
taskmanager.memory.process.size:8g (taskmanager进程可使用的全部内存,包括JVM和其他开销,默认1728M)
taskmanager.numberOfTaskSlots: 24 (对每个taskmanager能够分配的slot数量进行配置,默认1,可根据cpu进行决定)
parellelism.default: 8 # 并行数量,默认1,优先级低于代码中进行的并行度配置
high-availability: zookeeper
high-availability.storageDir: ftp://sjsy:chianoly@139.6.0.224:6600/flink/ha/
high-availability.zookeeper.quorum: zk01:2181,zk02:2181,zk03:2181
jobmanager.execution.failover-strategy: region
#历史服务器
jobmanager.archive.fs.dir: ftp://sjsy:chianoly@139.6.0.224:6600/flink/completed-jobs/
historyserver.web.address: 0.0.0.0
historyserver.web.port: 8082
historyserver.archive.fs.dir: ftp://sjsy:chianoly@139.6.0.224:6600/flink/completed-jobs/
heartbeat.timeout: 180000
akka.ask.timeout: 60s
web.timeout: 1000000
state.checkpoints.num-retained: 3

vim workers

hadoop102
hadoop103
hadoop104

vim masters(jobmanager)

hadoop102:8081
//可以多个
hadoop105:8081
hadoop106:8081
...

命令行启动(也可以手动上传)

1 上传

2

bin/flink run -m hadoop102:8081 -c com.chinaoly.wc.WordCountStream ./FlinkTutorial-1.17-1.0-SNAPSHOT.jar 

-m :后面跟 jobmanager的ip端口
-c : 后面跟全类名 
最后,相对路径或者绝对路径
部署模式

会话模式(Session Mode

单作业模式(Per-Job Mode)

应用模式(Application Mode)

会话模式(Session Mode)

最符合常规思维,我们先启动一个集群,保持一个会话,在这个会话中通过客户端提交作业。

集群启动时所以资源都已经确定,所以所有提交的作业会竞争集群中的资源。

会话模式比较适用于: 单个规模小,执行时间短的大量作业

单作业模式(Per-Job Mode)

会话模式因为资源共享会导致很多问题,所以为了更好地隔离资源,我们可以考虑为每个提交的作业启动一个集群,这就是所谓的单作业模式

作业完成后,集群就会关闭,所以资源也会释放

这些特性使得单作业模式在生产环境运行中更加稳定,所以是 实际应用的首选模式

需要注意:Flink本身无法直接这样允许,所以单作业模式一般需要借助一些资源管理框架来启动集群,比如 YARN,Kubernates(K8S)

应用模式(Application Mode)

前面提到的两种模式下,应用代码都是在客户端执行,然后由客户端提交到JobManager的。但是这种方式客户端需要占用大量网络带宽,去下载依赖和把二进制数据发送给JobManager;加上很多情况下我们提交作业用的是同一个客户端,就会加重客户端所在节点的资源消耗。

所以解决方法是: 我们不要客户端了,直接把应用提交到JobManager上运行。 而这也就代表着,我们需要为每一个提交的应用单独启动一个JobManager,也就是创建一个集群。这个JobManager只为执行一个应用而存在,执行结束后JobManager也就关闭了。这就是所谓的应用模式。

应用模式与单作业模式,都是提交作业后才创建集群;单作业模式是通过客户端来提交的,客户端解析出的每一个作业对应一个集群;而应用模式下,是直接由JobManager执行应用程序的。

运行模式

standalone运行模式

yarn运行模式

K8S运行模式

独立(Standalone)运行模式

独立模式是独立运行的,不依赖任何外部的资源管理平台;当然独立也是有代价的: 如果资源不足,或者出现故障,没有自动扩展或重分配资源的保证,必须手动处理,所以独立模式一般只使用在开发测试或者作业非常少的情景下。

此模式Flink自己管理资源

比如页面提交运行,打包成一个完成的jar,命令运行等。

会话模式支持,默认
单作业模式不支持,单作业模式需要借助一些资源管理平台
应用模式可是实现,应用模式下不会提前创建集群,所以不能调用start-cluster.sh脚本。我们可以使用同样在bin目录下的standalone-job.sh来创建一个JobManager

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

[外链图片转存中…(img-xAzRK79v-1715467480149)]
[外链图片转存中…(img-w5geb8oy-1715467480149)]
[外链图片转存中…(img-vRPuf81A-1715467480149)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值