SparkStreaming在实时处理的两个场景示例,2024年最新一线互联网架构师筑基必备技能之大数据开发篇

本文分享了作者提供的全面的大数据学习资料,包括SparkStreaming与Kafka集成示例,以及如何实现实时数据流处理并写入PostgreSQL。强调了自学体系化的重要性,鼓励读者加入技术交流社群以共同成长。
摘要由CSDN通过智能技术生成

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip204888 (备注大数据)
img

正文

    <artifactId>kafka-clients</artifactId>
    <version>2.8.0</version>
</dependency>

<!-- Spark Streaming Kafka Connector -->
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming-kafka-0-10_2.12</artifactId>
    <version>3.2.0</version>
</dependency>

<!-- PostgreSQL JDBC -->
<dependency>
    <groupId>org.postgresql</groupId>
    <artifactId>postgresql</artifactId>
    <version>42.2.24</version>
</dependency>

创建项目编写以下代码实现功能



package org.example;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.*;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructType;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka010.ConsumerStrategies;
import org.apache.spark.streaming.kafka010.KafkaUtils;
import org.apache.spark.streaming.kafka010.LocationStrategies;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.util.*;

public class SparkStreamingKafka {
public static void main(String[] args) throws InterruptedException {
// 创建 Spark 配置
SparkConf sparkConf = new SparkConf()
.setAppName(“spark_kafka”)
.setMaster(“local[*]”)
.setExecutorEnv(“setLogLevel”, “ERROR”);//设置日志等级为ERROR,避免日志增长导致的磁盘膨胀

    // 创建 Spark Streaming 上下文
    JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, new Duration(2000)); // 间隔两秒扑捉一次

    // 创建 Spark SQL 会话
    SparkSession sparkSession = SparkSession.builder().config(sparkConf).getOrCreate();


    // 设置 Kafka 相关参数
    Map<String, Object> kafkaParams = new HashMap<>();
    kafkaParams.put("bootstrap.servers", "10.0.0.105:9092,10.0.0.106:9092,10.0.0.107:9092");
    kafkaParams.put("key.deserializer", StringDeserializer.class);
    kafkaParams.put("value.deserializer", StringDeserializer.class);
    kafkaParams.put("auto.offset.reset", "earliest");
    // auto.offset.reset可指定参数有
    // latest:从分区的最新偏移量开始读取消息。
    // earliest:从分区的最早偏移量开始读取消息。
    // none:如果没有有效的偏移量,则抛出异常。
    kafkaParams.put("enable.auto.commit", true);  //采用自动提交offset 的模式
    kafkaParams.put("auto.commit.interval.ms",2000);//每隔离两秒提交一次commited-offset
    kafkaParams.put("group.id", "spark_kafka"); //消费组名称


    // 创建 Kafka stream
    Collection<String> topics = Collections.singletonList("spark_kafka"); // Kafka 主题名称
    JavaDStream<ConsumerRecord<String, String>> kafkaStream = KafkaUtils.createDirectStream(
            streamingContext,
            LocationStrategies.PreferConsistent(),
            ConsumerStrategies.Subscribe(topics, kafkaParams)  //订阅kafka
    );

    //定义数据结构
    StructType schema = new StructType()
            .add("key", DataTypes.LongType)
            .add("value", DataTypes.StringType);

    kafkaStream.foreachRDD((VoidFunction<JavaRDD<ConsumerRecord<String, String>>>) rdd -> {
        // 转换为 DataFrame
        Dataset<Row> df = sparkSession.createDataFrame(rdd.map(record -> {
            return RowFactory.create(record.offset(), record.value());  //将偏移量和value聚合
        }), schema);

        // 写入到 PostgreSQL
        df.write()
                //选择写入数据库的模式
                .mode(SaveMode.Append)//采用追加的写入模式
                //协议
                .format("jdbc")
                //option 参数
                .option("url", "jdbc:postgresql://localhost:5432/postgres") // PostgreSQL 连接 URL
                //确定表名
                .option("dbtable", "public.spark_kafka")//指定表名
                .option("user", "postgres") // PostgreSQL 用户名
                .option("password", "postgres") // PostgreSQL 密码
                .save();
    });
    // 启动 Spark Streaming
    streamingContext.start();
    // 等待 Spark Streaming 应用程序终止
    streamingContext.awaitTermination();
}

}


在执行代码前,向创建名为spark\_kafka的topic



kafka-topics.sh --create --topic spark_kafka --bootstrap-server 10.0.0.105:9092,10.0.0.106:9092,10.0.0.107:9092


向spark\_kafka 主题进行随机推数



kafka-producer-perf-test.sh --topic spark_kafka --thrghput 10 --num-records 10000 --record-size 100000 --producer-props bootstrap.servers=10.0.0.105:9092,10.0.0.106:9092,10.0.0.107:9092


运行过程中消费的offset会一直被提交到每一个分区  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/2e813e00e558497da55a094068e3ca85.png)


此时在数据库中查看,数据已经实时落地到库中  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/feda0334b5644606ac00e6ff932f398d.png)


#### TCP


TCP环境下,实时监控日志的输出,可用于监控设备状态、环境变化等。当监测到异常情况时,可以实时发出警报。



package org.example;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.*;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructType;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka010.ConsumerStrategies;
import org.apache.spark.streaming.kafka010.KafkaUtils;
import org.apache.spark.streaming.kafka010.LocationStrategies;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.util.*;

public class SparkStreamingKafka {
public static void main(String[] args) throws InterruptedException {
// 创建 Spark 配置
SparkConf sparkConf = new SparkConf()
.setAppName(“spark_kafka”) // 设置应用程序名称
.setMaster("local[]") // 设置 Spark master 为本地模式,[]表示使用所有可用核心

            // 设置日志等级为ERROR,避免日志增长导致的磁盘膨胀
            .setExecutorEnv("setLogLevel", "ERROR");

    // 创建 Spark Streaming 上下文
    JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, new Duration(2000)); // 间隔两秒扑捉一次

    // 创建 Spark SQL 会话
    SparkSession sparkSession = SparkSession.builder().config(sparkConf).getOrCreate();


    // 设置 Kafka 相关参数
    Map<String, Object> kafkaParams = new HashMap<>();
    kafkaParams.put("bootstrap.servers", "10.0.0.105:9092,10.0.0.106:9092,10.0.0.107:9092"); // Kafka 服务器地址

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

辄止,不再深入研究,那么很难做到真正的技术提升。**

需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)
[外链图片转存中…(img-peU9kTJp-1713324083938)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值