先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip204888 (备注大数据)
正文
云计算数据中心
云计算中心包括:刀片服务器、宽带网络连接、环境控制设配、监控设备以及各种安全装置等。 数据中心是云计算的重要载体,是云计算的温床,为云计算提供计算、存储、宽带等各种硬件资源,为各种平台、应用提供支撑环境。
云计算推动数据中心向虚拟化和云架构的转型,不断提高IT基础架构的灵活性,以降低IT、能源和空间成本,从而让客户能够快速地提高业务敏捷性。
物联网
物联网的概念
物联网(Internet of Things,简称IoT),它利用局域网或互联网等通信技术把传感器、控制器、机器、人员和物等通过新的方式联在一起,形成人与物、物与物相联,实现信息化和远程管理控制。
物联网的关键技术
物联网中的关键技术包括:识别和感知技术(二维码、RFID、传感器等)、网络与通信技术(远距离无线连接的全球数据网络,近距离的蓝牙技术、红外技术和Zigbee技术)、数据挖掘与融合技术等(云计算、云存储、云服务)
识别和感知技术
二维码(二维条码) :用某种特定的几何图形按一定规律在平面(二维方向上)分布的、黑白相间的、记录数据符号信息的图形;在代码编制上巧妙地利用构成计算机内部逻辑基础的“0”、“1”比特流的概念,使用若干个与二进制相对应的几何形体来表示文字数值信息,通过图象输入设备或光电扫描设备自动识读以实现信息自动处理。特点:信息容量大、编码范围广、容错能力强、译码可靠性高、成本低易制作。
射频识别(Radio Frequency IDentification,RFID):通过无线射频方式进行非接触双向数据通信,利用无线射频方式对记录媒体(电子标签或射频卡)进行读写,从而达到识别目标和数据交换的目的。用于静止或移动物体的无接触自动识别。RFID标签和读写器由天线、耦合元件、芯片组成。RFID标签作用:传输信息,回复信息;RFID读写器作用:读取或写入标签中的信息。特点:全天候、无接触、可同时实现多个物体自动识别。
传感器:能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。物联网借助传感器实现对物理世界的感知,包括:光敏传感器、声敏传感器、气敏传感器、压敏传感器等。传感器是人类感官的延伸。特点:微型化、数字化、智能化、网络化。
网络与通信技术
物联网中的网络与通信技术包括短距离无线通信技术和远程通信技术。短距离无线通信技术包括Zigbee、近场通信(Near Field Communication,NFC)、蓝牙、Wi-Fi、RFID等。远程通信技术包括互联网、2G/3G/4G移动通信网络、卫星通信网络等。
数据挖掘与融合技术
物联网中存在大量数据来源、各种异构网络和不同类型的系统,大量不同类型的数据,如何实现有效整合、处理和挖掘,是物联网处理层需要解决的关键技术问题。云计算和大数据技术的出现,为物联网存储、处理和分析数据提供了强大的技术支撑,海量物联网数据可以借助于庞大的云计算基础设施实现廉价存储,利用大数据技术实现快速处理和分析,满足各种实际应用需求。
物联网、云计算、大数据的关系
人工智能
人工智能的概念
人工智能(Artificial Intelligence,简称AI),是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以与人类智能相似的方式做出反应的智能机器,该领域的研究包括:机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR等7个关键技术。
1956年,在美国达特茅斯学院举办的一次会议上,计算机科学家约翰·麦卡锡提出了“人工智能”一词,标志着人工智能这门学科的诞生。麦卡锡也因此被誉为是“人工智能之父”。
人工智能的关键技术
机器学习
可参考本作者的其他文章。
人工智能、机器学习、深度学习之间的关系
- 人工智能:是研究、开发用于模拟、延伸和扩展人的智能的理论、方法及应用系统的一门新的技术科学。
- 机器学习:专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。是人工智能的核心研究领域之一,任何一个没有学习能力的系统都很难被认为是一个真正的智能系统。在从实践的角度来说,机器学习是计算机通过利用数据,训练出模型,然后使用模型进行决策的一种方法。它与人利用经验去预测未来的原理是类似的。
- 深度学习:源于人工神经网络的研究,含多隐层的多层感知器就是一种深度学习结构。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。
人机交互
- 人机交互是一门研究系统与用户之间的交互关系的学科。系统可以是各种各样的机器,也可以是计算机化的系统和软件。
- 人机交互界面通常是指用户可见的部分。用户通过人机交互界面与系统交流,并进行操作。
- 人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。
生物特征
生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。
VR/AR
虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。
计算机视觉
计算机视觉(Computer Vision,简称CV),是分析、研究让计算机智能化的达到类似人类的双眼“看”的一门研究科学,指用摄影机和计算机代替人眼对目标进行识别、跟踪和测量的机器视觉,并进一步做图像处理,成为更适合人眼观察或传送给仪器检测的图像。
自然语言处理
- 自然语言处理(Natural Language Processing,简称NLP),是指用计算机对自然语言的形、音、义等信息进行处理,即对字、词、句、篇章的输入、输出、识别分析、理解、生成等的操作和加工,实现人机间的信息交流。
- 自然语言处理的机制涉及两个流程,包括自然语言理解和自然语言生成。自然语言理解是指计算机能够理解自然语言文本的意义,自然语言生成则是指能以自然语言文本来表达给定的意图。
- 自然语言处理的具体表现形式包括机器翻译、文本摘要、文本分类、文本校对、信息抽取、语音合成、语音识别等
人工智能与大数据的关系
大数据与人工智能的关系
大数据的相关技术包括:数据采集与预处理、数据存储与管理、数据分析与处理、数据可视化、数据安全与隐私保护。
人工智能是典型的交叉学科,研究的内容集中在机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR等方向。
大数据和人工智能虽然关注点并不相同,但是却有密切的联系:一方面人工智能需要大量的数据作为“思考”和“决策”的基础,为人工智能提供了强大的存储能力和计算能力;另一方面大数据也需要人工智能技术进行数据价值化操作,比如机器学习就是数据分析的常用方式。
人工智能与大数据的区别
人工智能是一种计算形式,而大数据是一种传统计算,它不会根据结果采取行动,只是寻找结果。 二者要达成的目标和实现目标的手段不同。
大数据的主要目的是通过数据的对比分析来掌握和推演出更优的方案。人工智能是为了辅助和代替人类更快、更好的完成某些任务或进行某些决定。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)**
[外链图片转存中…(img-VMoMwPMg-1713389689568)]
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!