既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
大数据是指在规模(Volume)、多样性(Variety)、速度(Velocity)和价值(Value)四个方面具有特点的数据集。
- 数据量大(Volume):大数据涉及的数据量通常是庞大的,这使得传统的数据处理工具和方法无法胜任。
- 数据类型繁多(Variety):大数据不仅包括结构化数据,还包括半结构化数据和非结构化数据,如文本、图片、视频等。
- 处理速度快(Velocity):大数据的处理需要快速响应,实时或近实时的数据分析和决策支持成为了大数据处理的重要需求。
- 价值密度低(Value):由于数据量庞大,有效信息的提取和利用成为关键,如何在海量数据中挖掘有价值的信息成为大数据的核心挑战。
大数据产业的多个层面
大数据产业涵盖了从数据收集、存储、管理到分析和应用的多个层面,具体包括:
IT基础设施层:提供大数据处理的硬件和软件环境,如高性能计算、分布式存储等。
- 数据源层:涉及数据的采集、整合和预处理,为数据分析提供高质量的数据。
- 数据管理层:包括数据存储、数据安全和数据治理等方面的技术和方法。
- 数据分析层:通过统计分析、数据挖掘等手段从数据中提取有价值的信息。
- 数据平台层:为数据科学家和业务人员提供便捷的数据分析工具和平台。
- 数据应用层:将大数据分析的结果应用于各个行业和领域,如金融、医疗、智能城市等。
大数据、云计算和物联网的区别与联系
区别
- 大数据:关注于数据的收集、存储、处理和分析,以从海量数据中提取价值。
- 云计算:旨在提供灵活、可扩展的计算资源和服务,通过网络交付给用户。
- 物联网:侧重于将日常物品通过传感器和网络连接起来,实现智能管理和控制。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**