【记录搭建elk & 如何在linux共享文件】,2024年最新拿下我人生中第7个Offer

  • ubuntu 22
  • docker

创建docker network

docker network create elastic

三个镜像

docker pull elasticsearch:7.8.0
docker pull logstash:7.8.0
docker pull kibana:7.8.0

elasticsearch 启动!!!

docker run -d --name es01 --net elastic -p 9200:9200 -e "discovery.type=single-node" 121454ddad72[your image id]


es config
进入容器修改 cinfig下的elasticsearch.yml

cluster.name: "docker-cluster"
network.host: 0.0.0.0
xpack.security.enabled: true
xpack.security.transport.ssl.enabled: true



退出容器后,重新启动容器
再次进入容器,设置安全认证密码。

/usr/share/elasticsearch/bin/elasticsearch-setup-passwords interactive


查看是否监听端口9200
ss | grep 9200

访问地地址
http://localhost:9200/

可以遇到的问题:

ElasticSearch 容器中出現的 max virtual memory areas

参考以下
>> 解決 ElasticSearch 容器中出現的 max virtual memory areas
只需要在裡面加上下面這行就行了:

/etc/sysctl.conf
vm.max_map_count=262144

要確認設定有沒有成功,可以透過 sysctl -p 這個指令來驗證。

访问localhost:9200 显示如下,就成功了

{
  "name" : "4895e681875f",
  "cluster_name" : "docker-cluster",
  "cluster_uuid" : "C8NC8FWcSkqUv9x5M5pGVQ",
  "version" : {
    "number" : "7.8.0",
    "build_flavor" : "default",
    "build_type" : "docker",
    "build_hash" : "757314695644ea9a1dc2fecd26d1a43856725e65",
    "build_date" : "2020-06-14T19:35:50.234439Z",
    "build_snapshot" : false,
    "lucene_version" : "8.5.1",
    "minimum_wire_compatibility_version" : "6.8.0",
    "minimum_index_compatibility_version" : "6.0.0-beta1"
  },
  "tagline" : "You Know, for Search"
}

好家伙这么多密码
在这里插入图片描述查看网络 sudo docker network inspect elastic
在这里插入图片描述
2. 安装 kibana
宿主机创建配置文件映射到容器内
/data/kibana/kibana.yml

#
# ** THIS IS AN AUTO-GENERATED FILE **
#

# Default Kibana configuration for docker target
server.name: kibana
server.host: "0"
elasticsearch.hosts: [ "http://172.18.0.2:9200" ]
monitoring.ui.container.elasticsearch.enabled: true
i18n.locale: "zh-CN"
elasticsearch.username: "elastic"
elasticsearch.password: "123456"
xpack.reporting.encryptionKey: "sdfbwe83q12gsdfgsdvfshjfvashfn34y372rh32gru32yre32erh2u3hrlibsdfjefe"
xpack.security.encryptionKey: "hsaufhsabfasbhdsbfjbsjhfbshjbfsbfcshjdbf623423gjh234v32hv4h32h3vrhj"

  1. 修改elasticsearch.hosts 根据你的实际情况
  2. 使用更长的字符 > 32 『你自己随意设置哈』
  3. 修改 elasticsearch.password为刚才你设置的密码

启动容器

docker run -d --name kibana --net elastic -p 5601:5601 -v /data/kibana/kibana.yml:/usr/share/kibana/config/kibana.yml kibana:7.8.0

如果遇到:

FATAL  Error: [config validation of [xpack.reporting].encryptionKey]: value has length [11] but it must have a minimum length of [32].


xpack.reporting.encryptionKey: 设置更长的长度, 修改完成后,重启容器

  1. 安装logstash

创建logstash 的配置文件
/data/logstash/conf.d
/data/logstash/config

logstash.yml配置如下:

http.host: "0.0.0.0"

xpack.monitoring.elasticsearch.hosts: [ "http://172.19.0.2:9200" ]

xpack.monitoring.enabled: true

path.config: /usr/share/logstash/conf.d/*.conf

path.logs: /var/log/logstash


其中xpack.monitoring.elasticsearch.hosts配置项改为获取到的elasticsearch容器地址, sudo docker network inspect elastic
在这里插入图片描述

logstash.conf的配置如下:

input {

    tcp {

    mode => "server"

    host => "0.0.0.0"

    port => 5047

    codec => json_lines

}

}

output {

    elasticsearch {

    hosts => "172.19.0.2:9200"

    index => "springboot-logstash-%{+YYYY.MM.dd}"

    user => "elastic"

    password => "123456"

}

}


下面host填写elastsearch容器地址,index为日志索引的名称,user和password填写xpack设置的密码,port为对外开放收集日志的端口

运行logstash

docker run -it -d -p 5047:5047 -p 9600:9600 \
--name logstash --privileged=true  --net elastic -v \
/data/logstash/config/logstash.yml:/usr/share/logstash/config/logstash.yml -v \
/data/logstash/conf.d/:/usr/share/logstash/conf.d/ logstash:7.8.0

5047端口是刚才port设置的端口

  1. 创建springboot 工程

加入依赖

	<dependency>
		<groupId>net.logstash.logback</groupId>
		<artifactId>logstash-logback-encoder</artifactId>
		<version>6.6</version>
	</dependency>

logback-spring.xml

<?xml version="1.0" encoding="UTF-8"?>

<configuration debug="true">

    <!-- 获取spring配置 -->

    <springProperty scope="context" name="logPath" source="log.path" defaultValue="/app/log/elk-biz"/>

    <springProperty scope="context" name="appName" source="spring.application.name"/>

    <!-- 定义变量值的标签 -->

    <property name="LOG_HOME" value="${logPath}"/>

    <property name="SPRING_NAME" value="${appName}"/>


    <!-- 彩色日志依赖的渲染类 -->

    <conversionRule conversionWord="clr" converterClass="org.springframework.boot.logging.logback.ColorConverter"/>

    <conversionRule conversionWord="wex"

                    converterClass="org.springframework.boot.logging.logback.WhitespaceThrowableProxyConverter"/>

    <conversionRule conversionWord="wEx"

                    converterClass="org.springframework.boot.logging.logback.ExtendedWhitespaceThrowableProxyConverter"/>


    <!-- 链路追踪sleuth 格式化输出 以及 控制台颜色设置变量 -->

    <property name="CONSOLE_LOG_PATTERN"

              value="%d{yyyy-MM-dd HH:mm:ss.SSS} %highlight(%-5level) [${appName},%yellow(%X{X-B3-TraceId}),%green(%X{X-B3-SpanId}),%blue(%X{X-B3-ParentSpanId})] [%yellow(%thread)] %green(%logger:%L)   :%msg%n"/>


    <!-- #############################################定义日志输出格式以及输出位置########################################## -->

    <!--控制台输出设置-->

    <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">

        <encoder class="ch.qos.logback.classic.encoder.PatternLayoutEncoder">

            <pattern>${CONSOLE_LOG_PATTERN}</pattern>

            <!-- <charset>GBK</charset> -->

        </encoder>

    </appender>


    <!--普通文件输出设置-->

    <appender name="FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">

        <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">

            <FileNamePattern>${LOG_HOME}/log_${SPRING_NAME}_%d{yyyy-MM-dd}_%i.log</FileNamePattern>

            <timeBasedFileNamingAndTriggeringPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">

                <maxFileSize>200MB</maxFileSize>

            </timeBasedFileNamingAndTriggeringPolicy>

        </rollingPolicy>

        <encoder class="ch.qos.logback.classic.encoder.PatternLayoutEncoder">

            <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>

        </encoder>

    </appender>


    <!--aop接口日志拦截文件输出-->

    <appender name="bizAppender" class="ch.qos.logback.core.rolling.RollingFileAppender">

        <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">

            <FileNamePattern>${LOG_HOME}/log_%d{yyyy-MM-dd}_%i.log</FileNamePattern>

            <timeBasedFileNamingAndTriggeringPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">

                <maxFileSize>200MB</maxFileSize>

            </timeBasedFileNamingAndTriggeringPolicy>

        </rollingPolicy>

        <encoder class="ch.qos.logback.classic.encoder.PatternLayoutEncoder">

            <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>

        </encoder>

    </appender>


    <!--开启tcp格式的logstash传输,通过TCP协议连接Logstash-->

    <!--    <appender name="STASH" class="net.logstash.logback.appender.LogstashTcpSocketAppender">-->

    <!--        <destination>10.11.74.123:9600</destination>-->


**自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。**

**深知大多数大数据工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!**

**因此收集整理了一份《2024年大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。**
![img](https://img-blog.csdnimg.cn/img_convert/3d307d1d2183ce399c25d7ef23ef5627.png)
![img](https://img-blog.csdnimg.cn/img_convert/d3c598c6db7fda55b868a40cbeed8dda.png)
![img](https://img-blog.csdnimg.cn/img_convert/f6f6ce044554529b883e327c2d1d1d11.png)
![img](https://img-blog.csdnimg.cn/img_convert/c541ae8de7cb72292effb2dee036a226.png)
![img](https://img-blog.csdnimg.cn/img_convert/8499fe88d73638ec50c0e83438b7887b.png)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!**

**由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新**

**如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)**
![img](https://img-blog.csdnimg.cn/img_convert/972ac6ad82349becb2620231fd84b248.png)

**一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

U-1713000850238)]
[外链图片转存中...(img-rLf3Wuu4-1713000850238)]

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!**

**由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新**

**如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)**
[外链图片转存中...(img-CAF66q21-1713000850239)]

**一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值