大数据开发(牛客)面试被问频率最高的几道面试题_数据开发(牛客)面试被问频率最高的几道面试题

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip204888 (备注大数据)
img

正文

问过的一些公司:

阿里x2,腾讯,字节,快手x2,流利说,创略科技,宇信科技,猿辅导,转转,bigo,多益,富途x2

Flume组成架构如下图

图片
Agent

Agent是一个JVM进程,它以事件的形式将数据从源头送至目的。

Agent主要由Source、Channel、Sink3个部分组成。

Source

Source是负责接收数据到Flume Agent的组件。

图片
Channel

Channel是位于Source和Sink之间的缓冲区。因此,Channel允许Source和Sink运作在不同的速率上。Channel是线程安全的,可以同时处理几个Source的写入操作和几个Sink的读取操作。

图片
Sink

Sink不断地轮询Channel中的事件且批量地移除它们,并将这些事件批量写入到存储或索引系统、或者被发送到另一个Flume Agent。

图片
Kafka

Kafka是如何实现高吞吐的

可灵活回答:

1)Kafka为什么低延迟高吞吐?

2)Kafka高吞吐的原因

3)Kafka为什么高可用、高吞吐?

4)Kafka如何保证高吞吐量?

问过的一些公司:

蘑菇街x2,腾讯,美团x2,猿辅导,转转,小鹏汽车,京东,字节,网易

Kafka是分布式消息系统,需要处理海量的消息,Kafka的设计是把所有的消息都写入速度低容量大的硬盘,以此来换取更强的存储能力,但实际上,使用硬盘并没有带来过多的性能损失。

kafka主要使用了以下几个方式实现了超高的吞吐率。

1)顺序读写

kafka的消息是不断追加到文件中的,这个特性使kafka可以充分利用磁盘的顺序读写性能,顺序读写不需要硬盘磁头的寻道时间,只需很少的扇区旋转时间,所以速度远快于随机读写。

Kafka官方给出了测试数据(Raid-5,7200rpm):

顺序 I/O: 600MB/s

随机 I/O: 100KB/s

2)零拷贝

先简单了解下文件系统的操作流程,例如一个程序要把文件内容发送到网络。

这个程序是工作在用户空间,文件和网络socket属于硬件资源,两者之间有一个内核空间。

在操作系统内部,整个过程为:

图片
在 Linux kernel2.2 之后出现了一种叫做"零拷贝(zero-copy)"系统调用机制,就是跳过“用 户缓冲区”的拷贝,建立一个磁盘空间和内存的直接映射,数据不再复制到“用户态缓冲区” 。

系统上下文切换减少为 2 次,可以提升一倍的性能。

图片
3)文件分段

kafka的队列topic被分为了多个区partition,每个partition又分为多个段segment,所以一个队列中的消息实际上是保存在N多个片段文件中

图片
通过分段的方式,每次文件操作都是对一个小文件的操作,非常轻便,同时也增加了并 行处理能力

4)批量发送

Kafka允许进行批量发送消息,先将消息缓存在内存中,然后一次请求批量发送出去,比如可以指定缓存的消息达到某个量的时候就发出去,或者缓存了固定的时间后就发送出去 ,如100 条消息就发送,或者每5秒发送一次,这种策略将大大减少服务端的I/O次数

5)数据压缩

Kafka 还支持对消息集合进行压缩,Producer可以通过GZIP或Snappy格式对消息集合进行压缩,压缩的好处就是减少传输的数据量,减轻对网络传输的压力,Producer压缩之后,在 Consumer需进行解压,虽然增加了CPU的工作,但在对大数据处理上,瓶颈在网络上而不是 CPU,所以这个成本很值得。

HBase

HBase的rowkey设计原则

可灵活回答:

1)HBase如何设计rowkey?

2)你HBase的rowkey为什么这么设计?有什么优缺点?

3)Hbase rowKey设置讲究

问过的一些公司:

阿里x3,腾讯x2,美团x3,顺丰,360,小米x4,富途,蘑菇街,陌陌x2,美团,冠群驰骋,携程x2,vivo

HBase中,表会被划分为1…n个Region,被托管在RegionServer中。Region二个重要的属性:StartKey与EndKey表示这个Region维护的rowKey范围,当我们要读/写数据时,如果rowKey落在某个start-end key范围内,那么就会定位到目标region并且读/写到相关的数据。

那怎么快速精准的定位到我们想要操作的数据,就在于我们的rowkey的设计了。

设计原则如下:

1、rowkey长度原则

Rowkey是一个二进制码流,Rowkey的长度被很多开发者建议说设计在10~100个字节,不过建议是越短越好,不要超过16个字节。

原因如下:

1)数据的持久化文件HFile中是按照Key Value 存储的,如果Rowkey过长比如100个字节,1000万列数据光Rowkey就要占用100*1000 万=10亿个字节,将近1G数据,这会极大影响 HFile的存储效率;

2)MemStore将缓存部分数据到内存,如果 Rowkey字段过长内存的有效利用率会降低,系统将无法缓存更多的数据,这会降低检索效率。因此Rowkey的字节长度越短越好;

3)目前操作系统是都是64位系统,内存8字节对齐。控制在16个字节,8字节的整数倍利用操作系统的最佳特性。

2、rowkey散列原则

如果Rowkey是按时间戳的方式递增,不要将时间放在二进制码的前面,建议将Rowkey的高位作为散列字段,由程序循环生成,低位放时间字段,将会提高数据均衡分布在每个Regionserver实现负载均衡的几率。如果没有散列字段,首字段直接是时间信息将产生所有新数据都在一个 RegionServer上堆积的热点现象,这样在做数据检索的时候负载将会集中在个别 RegionServer,降低查询效率。

3、rowkey唯一原则

必须在设计上保证其唯一性。rowkey是按照字典顺序排序存储的,因此,设计rowkey的时候,要充分利用这个排序的特点,将经常读取的数据存储到一块,将最近可能会被访问的数据放到一块。

Spark

Spark数据倾斜问题+解决方案

问过的一些公司:

字节跳动x8,安恒信息,顺丰,腾讯,网易云音乐x2,小米,祖龙娱乐,商汤科技,阿里,米哈游,快手,百度社招,触宝,多益,贝壳,ebayx2,京东,嘉云数据

1、数据倾斜

数据倾斜指的是,并行处理的数据集中,某一部分(如Spark或Kafka的一个Partition)的数据显著多于 其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈

数据倾斜俩大直接致命后果

1)数据倾斜直接会导致一种情况:Out Of Memory

2)运行速度慢

主要是发生在Shuffle阶段。同样Key的数据条数太多了。导致了某个key(下图中的80亿条)所在的Task数 据量太大了。远远超过其他Task所处理的数据量

图片
一个经验结论是:一般情况下,OOM的原因都是数据倾斜

2、如何定位数据倾斜

数据倾斜一般会发生在shuffle过程中。很大程度是使用可能会触发shuffle操作的算子:distinct、groupByKey、reduceByKey、aggregateByKey、join、cogroup、repartition等。

查看任务->查看Stage->查看代码

图片
也可从以下几种情况考虑:

1)是不是有OOM情况出现,一般是少数内存溢出的问题

2)是不是应用运行时间差异很大,总体时间很长

3)需要了解你所处理的数据Key的分布情况,如果有些Key有大量的条数,那么就要小心数据倾斜的问题

4)一般需要通过Spark Web UI和其他一些监控方式出现的异常来综合判断

5)看看代码里面是否有一些导致Shuffle的算子出现

3、数据倾斜的几种典型情况

3.1 数据源中的数据分布不均匀,Spark需要频繁交互

3.2 数据集中的不同Key由于分区方式,导致数据倾斜

3.3 JOIN操作中,一个数据集中的数据分布不均匀,另一个数据集较小(主要)

3.4 聚合操作中,数据集中的数据分布不均匀(主要)

3.5 JOIN操作中,两个数据集都比较大,其中只有几个Key的数据分布不均匀

3.6 JOIN操作中,两个数据集都比较大,有很多Key的数据分布不均匀

3.7 数据集中少数几个key数据量很大,不重要,其他数据均匀

4、数据倾斜的处理方法

4.1 数据源中的数据分布不均匀,Spark需要频繁交互

解决方案:避免数据源的数据倾斜

实现原理:通过在Hive中对倾斜的数据进行预处理,以及在进行kafka数据分发时尽量进行平均分配。这种方案从根源上解决了数据倾斜,彻底避免了在Spark中执行shuffle类算子,那么肯定就不会有数据倾斜的问题了。

方案优点:实现起来简单便捷,效果还非常好,完全规避掉了数据倾斜,Spark作业的性能会大幅度提升。

方案缺点:治标不治本,Hive或者Kafka中还是会发生数据倾斜。

适用情况:在一些Java系统与Spark结合使用的项目中,会出现Java代码频繁调用Spark作业的场景,而且对Spark作业的执行性能要求很高,就比较适合使用这种方案。将数据倾斜提前到上游的Hive ETL,每天仅执行一次,只有那一次是比较慢的,而之后每次Java调用Spark作业时,执行速度都会很快,能够提供更好的用户体验。

总结:前台的Java系统和Spark有很频繁的交互,这个时候如果Spark能够在最短的时间内处理数据,往往会给前端有非常好的体验。这个时候可以将数据倾斜的问题抛给数据源端,在数据源端进行数据倾斜的处理。但是这种方案没有真正的处理数据倾斜问题

4.2 数据集中的不同Key由于分区方式,导致数据倾斜

解决方案1:调整并行度

实现原理:增加shuffle read task的数量,可以让原本分配给一个task的多个key分配给多个task,从而让每个task处理比原来更少的数据。

方案优点:实现起来比较简单,可以有效缓解和减轻数据倾斜的影响。

方案缺点:只是缓解了数据倾斜而已,没有彻底根除问题,根据实践经验来看,其效果有限。

实践经验:该方案通常无法彻底解决数据倾斜,因为如果出现一些极端情况,比如某个key对应的数据量有100万,那么无论你的task数量增加到多少,都无法处理。

图片
解决方案2:

自定义Partitioner(缓解数据倾斜)

适用场景:大量不同的Key被分配到了相同的Task造成该Task数据量过大。

解决方案:使用自定义的Partitioner实现类代替默认的HashPartitioner,尽量将所有不同的Key均匀分配到不同的Task中。

优势:不影响原有的并行度设计。如果改变并行度,后续Stage的并行度也会默认改变,可能会影响后续Stage。

劣势:适用场景有限,只能将不同Key分散开,对于同一Key对应数据集非常大的场景不适用。效果与调整并行度类似,只能缓解数据倾斜而不能完全消除数据倾斜。而且需要根据数据特点自定义专用的Partitioner,不够灵活。

4.3 JOIN操作中,一个数据集中的数据分布不均匀,另一个数据集较小(主要)

解决方案:

Reduce side Join转变为Map side Join

适用场景:在对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(比如几百M),比较适用此方案。

实现原理:普通的join是会走shuffle过程的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join。但是如果一个RDD是比较小的,则可以采用广播小RDD全量数据+map算子来实现与join同样的效果,也就是map join,此时就不会发生shuffle操作,也就不会发生数据倾斜。

优点:对join操作导致的数据倾斜,效果非常好,因为根本就不会发生shuffle,也就根本不会发生数据倾斜。

缺点:适用场景较少,因为这个方案只适用于一个大表和一个小表的情况。

4.4 聚合操作中,数据集中的数据分布不均匀(主要)

解决方案:两阶段聚合(局部聚合+全局聚合)

适用场景:对RDD执行reduceByKey等聚合类shuffle算子或者在Spark SQL中使用group by语句进行分组聚合时,比较适用这种方案

实现原理:将原本相同的key通过附加随机前缀的方式,变成多个不同的key,就可以让原本被一个task处理的数据分散到多个task上去做局部聚合,进而解决单个task处理数据量过多的问题。接着去除掉随机前缀,再次进行全局聚合,就可以得到最终的结果。具体原理见下图。

优点:对于聚合类的shuffle操作导致的数据倾斜,效果是非常不错的。通常都可以解决掉数据倾斜,或者至少是大幅度缓解数据倾斜,将Spark作业的性能提升数倍以上。

缺点:仅仅适用于聚合类的shuffle操作,适用范围相对较窄。如果是join类的shuffle操作,还得用其他的解决方案

将相同key的数据分拆处理

图片
4.5 JOIN操作中,两个数据集都比较大,其中只有几个Key的数据分布不均匀

解决方案:为倾斜key增加随机前/后缀

适用场景:两张表都比较大,无法使用Map侧Join。其中一个RDD有少数几个Key的数据量过大,另外一个RDD的Key分布较为均匀。

解决方案:将有数据倾斜的RDD中倾斜Key对应的数据集单独抽取出来加上随机前缀,另外一个RDD每条数据分别与随机前缀结合形成新的RDD(笛卡尔积,相当于将其数据增到到原来的N倍,N即为随机前缀的总个数),然后将二者Join后去掉前缀。然后将不包含倾斜Key的剩余数据进行Join。最后将两次Join的结果集通过union合并,即可得到全部Join结果。

优势:相对于Map侧Join,更能适应大数据集的Join。如果资源充足,倾斜部分数据集与非倾斜部分数据集可并行进行,效率提升明显。且只针对倾斜部分的数据做数据扩展,增加的资源消耗有限。

劣势:如果倾斜Key非常多,则另一侧数据膨胀非常大,此方案不适用。而且此时对倾斜Key与非倾斜Key分开处理,需要扫描数据集两遍,增加了开销。

注意:具有倾斜Key的RDD数据集中,key的数量比较少

图片
4.6 JOIN操作中,两个数据集都比较大,有很多Key的数据分布不均匀

解决方案:随机前缀和扩容RDD进行join

适用场景:如果在进行join操作时,RDD中有大量的key导致数据倾斜,那么进行分拆key也没什么意义。

实现思路:将该RDD的每条数据都打上一个n以内的随机前缀。同时对另外一个正常的RDD进行扩容,将每条数据都扩容成n条数据,扩容出来的每条数据都依次打上一个0~n的前缀。最后将两个处理后的RDD进行join即可。和上一种方案是尽量只对少数倾斜key对应的数据进行特殊处理,由于处理过程需要扩容RDD,因此上一种方案扩容RDD后对内存的占用并不大;而这一种方案是针对有大量倾斜key的情况,没法将部分key拆分出来进行单独处理,因此只能对整个RDD进行数据扩容,对内存资源要求很高。

优点:对join类型的数据倾斜基本都可以处理,而且效果也相对比较显著,性能提升效果非常不错。

缺点:该方案更多的是缓解数据倾斜,而不是彻底避免数据倾斜。而且需要对整个RDD进行扩容,对内存资源要求很高。

实践经验:曾经开发一个数据需求的时候,发现一个join导致了数据倾斜。优化之前,作业的执行时间大约是60分钟左右;使用该方案优化之后,执行时间缩短到10分钟左右,性能提升了6倍。

注意:将倾斜Key添加1-N的随机前缀,并将被Join的数据集相应的扩大N倍(需要将1-N数字添加到每一条数据上作为前缀)

图片
4.7 数据集中少数几个key数据量很大,不重要,其他数据均匀

解决方案:过滤少数倾斜Key

适用场景:如果发现导致倾斜的key就少数几个,而且对计算本身的影响并不大的话,那么很适合使用这种方案。比如99%的key就对应10条数据,但是只有一个key对应了100万数据,从而导致了数据倾斜。

优点:实现简单,而且效果也很好,可以完全规避掉数据倾斜。

缺点:适用场景不多,大多数情况下,导致倾斜的key还是很多的,并不是只有少数几个。

实践经验:在项目中我们也采用过这种方案解决数据倾斜。有一次发现某一天Spark作业在运行的时候突然OOM了,追查之后发现,是Hive表中的某一个key在那天数据异常,导致数据量暴增。因此就采取每次执行前先进行采样,计算出样本中数据量最大的几个key之后,直接在程序中将那些key给过滤掉。

说下RDD的宽依赖和窄依赖

可灵活回答:

1)Spark的宽依赖和窄依赖,为什么要这么划分?

问过的一些公司:

字节x7,小米x5,阿里x4,快手x3,美团x2,妙盈科技,头条x2,网易云,蘑菇街,京东x3,海康,抖音,米哈游,顺丰x2,360,拼多多,腾讯x2,作业帮社招,猿辅导,ebay

RDD和它依赖的parent RDD(s)的关系有两种不同的类型,窄依赖(narrow dependency)和宽依赖(wide dependency)

1)窄依赖指的是每一个parent RDD的Partition最多被子RDD的一个Partition使用

图片

2)宽依赖指的是多个子RDD的Partition会依赖同一个parent RDD的Partition

图片
Flink

Flink的Exactly Once语义怎么保证

可灵活回答:

1)Flink怎么保证精准一次消费?

2)Flink如何实现Exactly Once?

3)Flink如何保证仅一次语义?

4)Flink的端到端Exactly Once?

问过的一些公司:(社招问的也多)

头条x3,一点咨询,字节,微众,陌陌,触宝,网易,贝壳

Flink跟其他的流计算引擎相比,最突出或者做的最好的就是状态的管理。什么是状态呢?比如我们在平时的开发中,需要对数据进行count,sum,max等操作,这些中间的结果(即是状态)是需要保存的,因为要不断的更新,这些值或者变量就可以理解为是一种状态,拿读取kafka为例,我们需要记录数据读取的位置(即是偏移量),并保存offest,这时offest也可以理解为是一种状态。

Flink是怎么保证容错恢复的时候保证数据没有丢失也没有数据的冗余呢?checkpoint是使Flink 能从故障恢复的一种内部机制。检查点是 Flink 应用状态的一个一致性副本,包括了输入的读取位点。在发生故障时,Flink 通过从检查点加载应用程序状态来恢复,并从恢复的读取位点继续处理,就好像什么事情都没发生一样。Flink的状态存储在Flink的内部,这样做的好处就是不再依赖外部系统,降低了对外部系统的依赖。在Flink的内部。通过自身的进程去访问状态变量。同时会定期的做checkpoint持久化。把checkpoint存储在一个分布式的持久化系统中。如果发生故障。就会从最近的一次checkpoint中将整个流的状态进行恢复。

下面通过Flink从Kafka中获取数据,来说下怎么管理offest实现exactly-once的。

Apache Flink中实现的Kafka消费者是一个有状态的算子(operator),它集成了Flink的检查点机制,它的状态是所有Kafka分区的读取偏移量。当一个检查点被触发时,每一个分区的偏移量都被存到了这个检查点中。Flink的检查点机制保证了所有operator task的存储状态都是一致的。这里的“一致的”是什么意思呢?意思是它们存储的状态都是基于相同的输入数据。当所有的operator task成功存储了它们的状态,一个检查点才算完成。因此,当从潜在的系统故障中恢复时,系统提供了excatly-once的状态更新语义。

下面我们将一步步地介绍Apache Flink中的 Kafka消费位点是如何做检查点的。在本文的例子中,数据被存在了Flink的JobMaster中。值得注意的是,在POC或生产用例下,这些数据最好是能存到一个外部文件系统(如HDFS或S3)中。

第一步:
如下所示,一个Kafka topic,有两个partition,每个partition都含有 “A”,“B”,“C”,”D”,“E”5条消息。我们将两个partition的偏移量(offset)都设置为0。

图片
第二步:
Kafka comsumer(消费者)开始从 partition 0 读取消息。消息“A”正在被处理,第一个 consumer 的 offset 变成了1。

图片
第三步:
消息“A”到达了Flink Map Task。两个 consumer都开始读取他们下一条消息(partition0读取“B”,partition1读取“A”)。各自将offset更新成2和1。同时,Flink的 JobMaster开始在source触发了一个检查点。

图片
第四步:
接下来,由于source触发了检查点,Kafka consumer创建了它们状态的第一个快照(”offset = 2, 1”),并将快照存到了Flink的 JobMaster 中。Source 在消息“B”和“A”从partition 0 和 1 发出后,发了一个 checkpoint barrier。Checkopint barrier 用于各个 operator task 之间对齐检查点,保证了整个检查点的一致性。消息“A”到达了 Flink Map Task,而上面的 consumer 继续读取下一条消息(消息“C”)。

图片
第五步:

Flink Map Task收齐了同一版本的全部 checkpoint barrier后,那么就会将它自己的状态也存储到JobMaster。同时,consumer会继续从Kafka读取消息。

图片
第六步:
Flink Map Task完成了它自己状态的快照流程后,会向Flink JobMaster汇报它已经完成了这个checkpoint。当所有的task都报告完成了它们的状态checkpoint后,JobMaster就会将这个checkpoint标记为成功。从此刻开始,这个 checkpoint就可以用于故障恢复了。值得一提的是,Flink并不依赖Kafka offset从系统故障中恢复。

图片
故障恢复
在发生故障时(比如,某个worker挂了),所有的operator task会被重启,而他们的状态会被重置到最近一次成功的checkpoint。Kafka source分别从offset 2和1重新开始读取消息(因为这是完成的checkpoint中存的offset)。当作业重启后,我们可以期待正常的系统操作,就好像之前没有发生故障一样。如下图所示:

图片
Flink的checkpoint是基于Chandy-Lamport算法的分布式一致性快照,如果想更加深入的了解Flink的checkpoint可以去了解一下这个算法。

数据仓库

数据仓库分层(层级划分),每层做什么

问过的一些公司:

字节,阿里x2,爱奇艺,百度x2,网易x3,美团x5,贝壳,keep,马蜂窝x2,转转,滴滴,小米,米哈游,有赞x2,猿辅导,58x2,作业帮社招,字节社招,腾讯社招x2,京东,触宝

CIF 层次架构(信息工厂)通过分层将不同的建模方案引入到不同的层次中,CIF 将数据仓库分为四层,如图所示:

图片
这里再给一张项目里面的数仓分层架构

图片
分层优点:复杂问题简单化、清晰数据结构(方便管理)、增加数据的复用性、隔离原始数据(解耦)

ODS(Operational Data Store):

操作数据存储层,往往是业务数据库表格的一对一映射,将业务数据库中的表格在 ODS 重新建立,数据完全一致;

DWD(Data Warehouse Detail):

数据明细层,在 DWD 进行数据的清洗、脱敏、统一化等操作,DWD 层的数据是干净并且具有良好一致性的数据;

DWS(Data Warehouse Service):

服务数据层(公共汇总层),在DWS层进行轻度汇总,为DM层中的不同主题提供公用的汇总数据;

DM(Data Market):

数据集市层,DM层针对不同的主题进行统计报表的生成。

其它类型

Scala实现wordcount

问过的一些公司:

网易云,字节x2,第四范式

先来个复杂版的

object WordCount {
def main(args: Array[String]): Unit = {
//定义一个List
val list = List(“java scala java”,“scala python scala”)
//处理原始数据,获取每个word
val words = list.flatMap(.split(" "))
println(words)//List(java, scala, java, scala, python, scala)
//改变格式,为元组(word,1)
val wordOne = words.map((
,1))
println(wordOne)//List((java,1), (scala,1), (java,1), (scala,1), (python,1), (scala,1))
//根据(word,1)中的key值 word 进行分组
val wordG = wordOne.groupBy(*.*1)
println(wordG)//Map(scala -> List((scala,1), (scala,1), (scala,1)), java -> List((java,1), (java,1)), python -> List((python,1)))

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

/List(java, scala, java, scala, python, scala)
//改变格式,为元组(word,1)
val wordOne = words.map((,1))
println(wordOne)//List((java,1), (scala,1), (java,1), (scala,1), (python,1), (scala,1))
//根据(word,1)中的key值 word 进行分组
val wordG = wordOne.groupBy(
.*1)
println(wordG)//Map(scala -> List((scala,1), (scala,1), (scala,1)), java -> List((java,1), (java,1)), python -> List((python,1)))

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)
[外链图片转存中…(img-uApiFjyf-1713391688331)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 10
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
2023全牛客史上最全MySQL大厂常面试题合集,是一份总结了许多MySQL常见面试题的资料。在MySQL作为关系型数据库中的重要一员,业界使用率极高,成为了大厂面试的必考点之一。对于面试者来说,掌握MySQL相关知识无疑是非常重要的。 面对这样一份面试题合集,我们需要掌握MySQL的基本架构、性能优化、存储引擎等方面的知识。首先,我们需要了解MySQL的基本架构,即MySQL架构的三层结构,包括连接处理层、查询处理层和存储引擎层。此外,对于查询语句的优化,我们需要了解索引的使用、查询语句的执行流程等概念,并且掌握MySQL自带的调优工具。 在MySQL性能优化方面,我们可以从硬件、操作系统、MySQL本身以及SQL语句的角度入手。例如,可以从MySQL参数配置、SQL执行计划、SQL调优等方面解决性能题。同时,由于存储引擎对于MySQL的性能非常关键,我们也需要了解InnoDB和MyISAM这两种主流存储引擎的特点与优缺点,及其在实际应用中的使用情况。 总之,掌握MySQL的基本架构、性能优化、存储引擎等知识是应聘MySQL岗位时不可或缺的必备技能。面对这份全牛客史上最全MySQL大厂常面试题合集,需要认真学习、反复练习,并对自己的掌握情况进行不断的总结与提高。只有做到这些,才能在面试中展现出自己的实力,获得满意的工作机会。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值