ElasticSearch 实现 全文检索 支持(PDF、TXT、Word、HTML等文件)通过 ingest-attachment 插件实现 文档的检索_es全文检索word文件

  1. Attachment 插件对性能有一定的影响,因为执行全文搜索需要解析和提取二进制文件的内容。如果处理大量的二进制文件,可能会影响搜索性能。
  2. Attachment 插件有一些限制,例如插件不支持对二进制文件进行过滤或排除,因此如果文件内容包含敏感信息,则不应使用 Attachment 插件进行索引。

二、初始化 ingest-attachment

1、windows安装

1、先在ES的bin目录下执行命令 安装 ngest-attachment插件

elasticsearch-plugin install ingest-attachment

作者已经安装过了 所以不能重复安装,插件下载过程中会出现

2、Liunx安装

通过官网下载,找到对应的版本号:attachment下载网站

下载好后上传到服务器,进入elasticsearch安装目下的bin目录下。
执行sudo ./elasticsearch-plugin install file:///home/ingest-attachment-7.9.0.zip 即可
重启ES  打印 [apYgDEl] loaded plugin [ingest-attachment] 表示安装成功

3、小结

安装完成后需要重新启动ES

接下来我们需要创建一个关于ingest-attachment的文本抽取管道

PUT /_ingest/pipeline/attachment
{
    "description": "Extract attachment information",
    "processors": [
        {
            "attachment": {
                "field": "content",
                "ignore_missing": true
            }
        },
        {
            "remove": {
                "field": "content"
            }
        }
    ]
}

后续我们的文件需要base64后储存到 attachment.content 索引字段中

三、如何应用?

1、通过命令语句简易检索

创建一个ES 索引 并且添加一些测试数据

POST /pdf_data/_doc?pretty
{

  "id": "3",

  "name": "面试题文件1.pdf",

  "age": 18,

  "type": "file",

  "money": 1111,

  "createBy": "阿杰",

  "createTime": "2022-11-03T10:41:51.851Z",

  "attachment": {

    "content": "面试官:如何保证消息不被重复消费啊?如何保证消费的时候是幂等的啊?Kafka、ActiveMQ、RabbitMQ、RocketMQ 都有什么区别,以及适合哪些场景?",

    "date": "2022-11-02T10:41:51.851Z",

    "language": "en"

  }
}

通过插入的文档内容为条件进行检索

# 简单 单条件查询 文档内容检索
GET /pdf_data/_search
{
  "query": {
    "match": {
      "attachment.content": "面试官:如何保证消息不被重复消费啊?如何保证消费的时候是幂等的啊?"
    }
  }
}

2、整合java代码实现ES通过ingest-attachment进行全文检索

1、首先将文件转为BASE64进行ES数据插入
/**
     * 将文件 文档信息储存到数据中
     * @param file
     * @return
     */
    @PostMapping("/insertFile")
    @ApiOperation(value="创建索引ES-传入ES索引-传入文件", notes="创建索引ES-传入ES索引-传入文件")
    public IndexResponse insertFile(@RequestAttribute("file") MultipartFile file,@RequestParam("indexName")String indexName){
        FileObj fileObj = new FileObj();
        fileObj.setId(String.valueOf(System.currentTimeMillis()));
        fileObj.setName(file.getOriginalFilename());
        fileObj.setType(file.getName().substring(file.getName().lastIndexOf(".") + 1));
        fileObj.setCreateBy(RandomNameGenerator.generateRandomName());
        fileObj.setCreateTime(String.valueOf(System.currentTimeMillis()));
        fileObj.setAge(RandomNameGenerator.getAge());
        fileObj.setMoney(RandomNameGenerator.getMoney());
        // 文件转base64
        byte[] bytes = new byte[0];
        try {
            bytes = file.getBytes();
            //将文件内容转化为base64编码
            String base64 = Base64.getEncoder().encodeToString(bytes);
            fileObj.setContent(base64);

           IndexResponse indexResponse=  ElasticsearchUtil.upload(fileObj,indexName);
            if (0==indexResponse.status().getStatus()){
                // 索引创建并插入数据成功
                System.out.println("索引创建并插入数据成功");
            }
            return indexResponse;

        } catch (Exception e) {
            e.printStackTrace();
        }
        return null;
    }
2、创建索引、插入数据,并且将文档数据抽取到管道中
    @Autowired
    private RestHighLevelClient restHighLevelClient;

    private  static  RestHighLevelClient levelClient;

    @PostConstruct
    public void initClient() {
        levelClient = this.restHighLevelClient;
    }

/**
     * 创建索引并插入数据
     * @param file
     * @param indexName
     * @return
     * @throws IOException
     */
    public static IndexResponse upload(FileObj file,String indexName) throws IOException {
        // TODO 创建前需要判断当前文档是否已经存在
        if (!isIndexExist(indexName)) {
            CreateIndexRequest request = new CreateIndexRequest(indexName);
        // 如果需要ik分词器就添加配置,不需要就注释掉 
            // 添加 IK 分词器设置  ik_max_word
//            request.settings(Settings.builder()
//                    .put("index.analysis.analyzer.default.type", "ik_max_word")
//                    .put("index.analysis.analyzer.default.use_smart", "true")
//            );
            
            // 添加 IK 分词器设置 ik_smart 
            request.settings(Settings.builder()
                    .put("index.analysis.analyzer.default.type", "ik_smart")
            );
            CreateIndexResponse response = levelClient.indices().create(request, RequestOptions.DEFAULT);
            log.info("执行建立成功?" + response.isAcknowledged());
        }
        IndexRequest indexRequest = new IndexRequest(indexName);
        //上传同时,使用attachment pipline进行提取文件
        indexRequest.source(JSON.toJSONString(file), XContentType.JSON);
        indexRequest.setPipeline("attachment");
        IndexResponse indexResponse= levelClient.index(indexRequest,RequestOptions.DEFAULT);
        System.out.println(indexResponse);
        return indexResponse;
    }
3、其他代码补充

ES Config 配置类

/**
 * ES配置类
 * author: 阿杰
 */
@Configuration
public class ElasticSearchClientConfig {

    /**
     * ES 地址:127.0.0.1:9200
     */
    @Value("${es.ip}")
    private String hostName;

    @Bean
    public RestHighLevelClient restHighLevelClient() {
        String[] points = hostName.split(",");
        HttpHost[] httpHosts = new HttpHost[points.length];
        for (int i = 0; i < points.length; i++) {
            String point = points[i];
            httpHosts[i] = new HttpHost(point.split(":")[0], Integer.parseInt(point.split(":")[1]), "http");
        }
        RestHighLevelClient client = new RestHighLevelClient(
                RestClient.builder(httpHosts));
        return client;
    }

    @Bean
    public ElasticsearchUtil elasticSearchUtil() {
        return new ElasticsearchUtil();
    }


}

数据插入使用的实体类

/**
 * author: 阿杰
 */


![img](https://img-blog.csdnimg.cn/img_convert/9ba9d641e6a88c98aed34d6dcf3d835a.png)
![img](https://img-blog.csdnimg.cn/img_convert/1c78ce22dfc353a4c8c7658468e72bda.png)
![img](https://img-blog.csdnimg.cn/img_convert/57061a2ae91ac8e21db343539d858394.png)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

 ElasticsearchUtil();
    }


}

数据插入使用的实体类

/**
 * author: 阿杰
 */


[外链图片转存中...(img-S2vbQeje-4702037531113)]
[外链图片转存中...(img-vhHospZ5-4702037531114)]
[外链图片转存中...(img-KttP3wvi-4702037531114)]

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

SpringBoot是一种快速构建基于Spring框架的Java应用程序的工具。为了实现wordpdftxt文件的非结构化数据全文内容检索,可以使用SpringBoot和ElasticsearchES)来实现Elasticsearch是一种开源搜索引擎,其使用简单、快速高效、支持几乎所有类型的查询操作。 首先,需要将wordpdftxt文件的非结构化数据存储到ES中。可以使用Java中的POI、Apache Tika等工具来解析这些文件,将其转换为需要的文本格式,并将其存储到ES中。可以使用Spring Data Elasticsearch实现ES的交互,并创建一个Document对象来表示每个文件。 其次,需要编写一个查询方法来搜索这些文件。可以使用ES提供的全文检索功能,使用户可以搜索其内容并找到与搜索关键字相关联的文件。可以使用Spring Data Elasticsearch来创建查询对象并执行查询,将结果返回给用户。 需要注意的是,对于WordPDF等二进制文件,需要将其转换为文本格式,而对于文本文件,只需将其直接存储到ES中。此外,还需考虑一些优化措施,如数据分片、数据备份和恢复等,以确保数据的完整性和可靠性。 最后,SpringBoot和ES的集成可以大大简化非结构化数据全文内容检索的开发和部署工作。它不仅可以提高检索效率,还可以保证数据的高可靠性和安全性。因此,它是一种非常有用的工具,可以满足企业的数据检索和管理需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值