3、什么是kafka?
kafka是一种基于订阅发布模式的高性能,高吞吐的实时的消息队列,是一个分布式系统,高性能的TCP网络协议进行的。
4、消息队列的模式主要分成两种模式?
a、生产者、消费者模式
b、消息队列模式
5、kafka的组成:
kafaka主要是由生产者、消费者、broker、zookeeper组成
其中:
生产者:生产数据
消费者:消费数据
broker:是kafka集群中服务器节点
topic:一个topic是kafka集群中数据流中的列别,存储数据
partition:一个topic可以分成多个分区。
replica:副本,实现kafka集群的容错
consumer group:消费者组,对于同一个消费者中的消费者可以消费同一个topic
offset:偏移量,对于消费者和partition来说,可以通过offset进行拉取数据。
6、在kafka集群中,对于分区也分leader和follower(在分区的层面上讨论)
leader :只负责读写数据
follower:负责同步数据,选举作用。
7、幂等性:
所谓的幂等性就是无论生产者向broker中发送多少条数据,broker只会持久化一条数据
实现原理:
当生产者生产完数据就会发送到分区中进行保存,此时kafka就会向生产者发送ack信号,当生产者接受的ack响应表示数据保存,否则就会重新发送一条相同的数据。
8、副本的ack机制:
1、acks=0,生产者只负责写入数据,不管数据是否写入成功,数据可能会丢失,性能是最好的。
2、acks=1,生产者将数据写入到leader中,返回写入成功,就会继续发送下一条数据
3、acks=-1/all,生产者将数据写入到leader中,同时也会将数据写入到副本中,当所有的数据都写入成功后,就返回写入成功,才会发送下一条数据。
9、生产者写入分区的策略:
1、轮询负载策略:将数据循环写入分区中
2、基于hash的分区策略:根据hash的值进入不同的分区中
3、基于key写入分区:通过hash值与分区的个数继续取余,但是会导致数据倾斜。
4、消费者消费数分区分配策略:默认使用的是range分配。
10、leader选举:
在kafka集群中,controller是通过zk进行选举。在分区中的leader是通过ISR进行选举的。
11、kafka的读写流程:
kafka的读数据:
1、通过zk找出partition对应的leader,leader负责读取数据。
2、通过zk找出对应的消费者的offset
3、leader从对应的offset开始读取数据
4、提交offset
kafka的写数据
1、通过zk找到对应的partition对应的leader,leader负责写入数据
2、生产者向leader中写入数据
3、ISR中的fllower负责同步数据,并返回ack给leader。
4、返回ack给生产者。
12、kafka性能高的原因:
1、kafka采用的是一个sendfile的零拷贝技术
2、kafka是批量写入和读取的,一批批的写入数据,默认写入和读取的大小约64kb左右。是在分区级别上来说明的。
3、kafka写磁盘是顺序读取和写入的。
13、kafka中的文件删除策略:
默认是7天作为一个周期,删除的是整个文件,系统默认是1G生成一个文件,可以在配置文件中修改:
server.properties
14、kafka中分区的目的:
实现分布式,一个topic的数据量非常大,只存在同一个分区中压力会比较大。
15、在Kafka中是如何保证数据不丢失:
1、broker保证数据不丢失的原因是副本机制
2、生产者保证数据不丢失的原因是acks机制
3、消费者保证数据不丢失的原因是控制offset
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数大数据工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)
一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)
[外链图片转存中…(img-yPP1OU2T-1713024261927)]
一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!