+ step4:导出参数
+ step5:其他参数
-
实施
- 语法
sqoop import | export \ --数据库连接参数 --HDFS或者Hive的连接参数 --配置参数
-
数据库参数
- –connect jdbc:mysql://hostname:3306
- –username
- –password
- –table
- –columns
- –where
- -e/–query
-
导入参数
- –delete-target-dir
- –target-dir
- –hcatalog-database
- –hcatalog-table
-
导出参数
- –export-dir
- –hcatalog-database
- –hcatalog-table
-
其他参数
- -m
-
连接Oracle语法
--connect jdbc:oracle:thin:@OracleServer:OraclePort:OracleSID
-
测试采集Oracle数据
- 进入
docker exec -it sqoop bash
- 测试
sqoop import \ --connect jdbc:oracle:thin:@oracle.bigdata.cn:1521:helowin \ --username ciss \ --password 123456 \ --table CISS4.CISS_BASE_AREAS \ --target-dir /test/full_imp/ciss4.ciss_base_areas \ --fields-terminated-by "\t" \ -m 1
- 查看结果
-
小结
- 掌握Sqoop常用命令的使用
02:YARN资源调度及配置
-
目标:实现YARN的资源调度配置
-
实施
-
常用端口记住:排错
- NameNode:8020,50070
- ResourceManager:8032,8088
- JobHistoryServer:19888
- Master:7077,8080
- HistoryServer:18080
-
YARN调度策略
- FIFO:不用
- 单队列,队列内部FIFO,所有资源只给一个程序运行
- Capacity:Apache
- 多队列,队列内部FIFO,资源分配给不同的队列,队列内部所有资源只给一个程序运行
- Fair:CDH
- 多队列,队列内部共享资源,队列内部的资源可以给多个程序运行
- FIFO:不用
-
YARN面试题
- 程序提交成功,但是不运行而且不报错,什么问题,怎么解决?
- 资源问题:APPMaster就没有启动
- 环境问题
- NodeManager进程问题:进程存在,但不工作
- 机器资源不足导致YARN或者HDFS服务停止:磁盘超过90%,所有服务不再工作
- 解决:实现监控告警:80%,邮件告警
- YARN中程序运行失败的原因遇到过哪些?
- 代码逻辑问题
- 资源问题:Container
- Application / Driver:管理进程
- MapTask和ReduceTask / Executor:执行进程
- 解决问题:配置进程给定更多的资源
- 程序提交成功,但是不运行而且不报错,什么问题,怎么解决?
-
问题1:程序已提交YARN,但是无法运行,报错:Application is added to the scheduler and is not activated. User’s AM resource limit exceeded.
yarn.scheduler.capacity.maximum-am-resource-percent=0.8
- 配置文件:${HADOOP\_HOME}/etc/hadoop/capacity-scheduler.xml - 属性功能:指定队列最大可使用的资源容量大小百分比,默认为0.2,指定越大,AM能使用的资源越多
- 问题2:程序提交,运行失败,报错:无法申请Container
yarn.scheduler.minimum-allocation-mb=512
- 配置文件:${HADOOP\_HOME}/etc/hadoop/yarn-site.xml - 属性功能:指定AM为每个Container申请的最小内存,默认为1G,申请不足1G,默认分配1G,值过大,会导致资源不足,程序失败,该值越小,能够运行的程序就越多
-
问题3:怎么提高YARN集群的并发度?
- 物理资源、YARN资源、Container资源、进程资源
- YARN资源配置
yarn.nodemanager.resource.cpu-vcores=8 yarn.nodemanager.resource.memory-mb=8192
- Container资源
yarn.scheduler.minimum-allocation-vcores=1 yarn.scheduler.maximum-allocation-vcores=32 yarn.scheduler.minimum-allocation-mb=1024 yarn.scheduler.maximum-allocation-mb=8192
- MR Task资源
mapreduce.map.cpu.vcores=1 mapreduce.map.memory.mb=1024 mapreduce.reduce.cpu.vcores=1 mapreduce.reduce.memory.mb=1024
- Spark Executor资源
--driver-memory #分配给Driver的内存,默认分配1GB --driver-cores #分配给Driver运行的CPU核数,默认分配1核 --executor-memory #分配给每个Executor的内存数,默认为1G,所有集群模式都通用的选项 --executor-cores #分配给每个Executor的核心数,YARN集合和Standalone集群通用的选项 --total-executor-cores NUM #Standalone模式下用于指定所有Executor所用的总CPU核数 --num-executors NUM #YARN模式下用于指定Executor的个数,默认启动2个
-
实现:修改问题1中的配置属性
- 注意:修改完成,要重启YARN
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-jgRIa2kT-1673426702988)(Day2_数仓设计及数据采集.assets/image-20210822085238536.png)]
-
-
小结
- 实现YARN的资源调度配置
03:MR的Uber模式
-
目标:了解MR的Uber模式的配置及应用
-
实施
-
Spark为什么要比MR要快
- MR慢
-
只有Map和Reduce阶段,每个阶段的结果都必须写入磁盘
- 如果要实现Map1 -> Map2 -> Reduce1 -> Reduce2
- Mapreduce1:Map1
- MapReduce2:Map2 -> Reduce1
- Mapreduce3:Reduce2
-
MapReduce程序处理是进程级别:MapTask进程、ReduceTask进程
-
问题:MR程序运行在YARN上时,有一些轻量级的作业要频繁的申请资源再运行,性能比较差怎么办?
- Uber模式
-
功能:Uber模式下,程序只申请一个AM Container:所有Map Task和Reduce Task,均在这个Container中顺序执行
- 默认不开启
- 配置:${HADOOP_HOME}/etc/hadoop/mapred-site.xml
mapreduce.job.ubertask.enable=true #必须满足以下条件 mapreduce.job.ubertask.maxmaps=9 mapreduce.job.ubertask.maxreduces=1 mapreduce.job.ubertask.maxbytes=128M yarn.app.mapreduce.am.resource.cpu-vcores=1 yarn.app.mapreduce.am.resource.mb=1536M
-
特点
- Uber模式的进程为AM,所有资源的使用必须小于AM进程的资源
- Uber模式条件不满足,不执行Uber模式
- Uber模式,会禁用推测执行机制
-
-
小结
- 了解MR的Uber模式的配置及应用
04:Sqoop采集数据格式问题
-
目标:掌握Sqoop采集数据时的问题
-
路径
- step1:现象
- step2:问题
- step3:原因
- step4:解决
-
实施
-
现象
- step1:查看Oracle中CISS_SERVICE_WORKORDER表的数据条数
select count(1) as cnt from CISS_SERVICE_WORKORDER;
- step2:采集CISS_SERVICE_WORKORDER的数据到HDFS上sqoop import
–connect jdbc:oracle:thin:@oracle.bigdata.cn:1521:helowin
–username ciss
–password 123456
–table CISS4.CISS_SERVICE_WORKORDER
–delete-target-dir
–target-dir /test/full_imp/ciss4.ciss_service_workorder
–fields-terminated-by “\001”
-m 1
- step3:Hive中建表查看数据条数 - 进入Hive容器 ``` docker exec -it hive bash ``` - 连接HiveServer ``` beeline -u jdbc:hive2://hive.bigdata.cn:10000 -n root -p 123456 ``` - 创建测试表 ```sql create external table test_text( line string ) location '/test/full_imp/ciss4.ciss_service_workorder'; ``` - 统计行数 ``` select count(*) from test_text; ```
-
问题:Sqoop采集完成后导致HDFS数据与Oracle数据量不符
-
原因
- sqoop以文本格式导入数据时,默认的换行符是特殊字符
- Oracle中的数据列中如果出现了\n、\r、\t等特殊字符,就会被划分为多行
- Oracle数据
id name age 001 zhang\nsan 18
- Sqoop遇到特殊字段就作为一行
001 zhang san 18
- Hive
id name age 001 zhang san 18
-
解决
- 方案一:删除或者替换数据中的换行符
- –hive-drop-import-delims:删除换行符
- –hive-delims-replacement char:替换换行符
- 不建议使用:侵入了原始数据
- 方案二:使用特殊文件格式:AVRO格式
- 方案一:删除或者替换数据中的换行符
-
-
小结
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
方案二:使用特殊文件格式:AVRO格式
- 小结
[外链图片转存中…(img-FH8P3ZN3-1714289324484)]
[外链图片转存中…(img-6rjvjkVS-1714289324485)]
[外链图片转存中…(img-iT2Xb5dA-1714289324485)]
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新