助力工业物联网,工业大数据项目之数据采集【四】_docker exec -it sqoop bash(1)

文章详细介绍了如何使用Sqoop进行数据采集,包括连接参数设置、Oracle数据迁移,以及YARN资源调度中的常见问题,如内存限制、Container资源分配、Uber模式的应用和数据格式转换。还讨论了如何通过调整配置解决资源不足和数据不一致等问题,以及推荐使用AVRO格式以避免数据格式问题。
摘要由CSDN通过智能技术生成
+ step4:导出参数
+ step5:其他参数
  • 实施

    • 语法
    sqoop import | export \
    --数据库连接参数
    --HDFS或者Hive的连接参数
    --配置参数
    
    
    • 数据库参数

      • –connect jdbc:mysql://hostname:3306
      • –username
      • –password
      • –table
      • –columns
      • –where
      • -e/–query
    • 导入参数

      • –delete-target-dir
      • –target-dir
      • –hcatalog-database
      • –hcatalog-table
    • 导出参数

      • –export-dir
      • –hcatalog-database
      • –hcatalog-table
    • 其他参数

      • -m
    • 连接Oracle语法

    --connect jdbc:oracle:thin:@OracleServer:OraclePort:OracleSID
    
    
    • 测试采集Oracle数据

      • 进入
      docker exec -it sqoop bash
      
      
      • 测试
      sqoop import \
      --connect jdbc:oracle:thin:@oracle.bigdata.cn:1521:helowin \
      --username ciss \
      --password 123456 \
      --table CISS4.CISS_BASE_AREAS \
      --target-dir /test/full_imp/ciss4.ciss_base_areas \
      --fields-terminated-by "\t" \
      -m 1
      
      
      • 查看结果

      image-20210822094343047

  • 小结

    • 掌握Sqoop常用命令的使用

02:YARN资源调度及配置

  • 目标实现YARN的资源调度配置

  • 实施

    • 常用端口记住:排错

      • NameNode:8020,50070
      • ResourceManager:8032,8088
      • JobHistoryServer:19888
      • Master:7077,8080
      • HistoryServer:18080
    • YARN调度策略

      • FIFO:不用
        • 单队列,队列内部FIFO,所有资源只给一个程序运行
      • Capacity:Apache
        • 多队列,队列内部FIFO,资源分配给不同的队列,队列内部所有资源只给一个程序运行
      • Fair:CDH
        • 多队列,队列内部共享资源,队列内部的资源可以给多个程序运行
    • YARN面试题

      • 程序提交成功,但是不运行而且不报错,什么问题,怎么解决?
        • 资源问题:APPMaster就没有启动
        • 环境问题
          • NodeManager进程问题:进程存在,但不工作
          • 机器资源不足导致YARN或者HDFS服务停止:磁盘超过90%,所有服务不再工作
          • 解决:实现监控告警:80%,邮件告警
      • YARN中程序运行失败的原因遇到过哪些?
        • 代码逻辑问题
        • 资源问题:Container
          • Application / Driver:管理进程
          • MapTask和ReduceTask / Executor:执行进程
        • 解决问题:配置进程给定更多的资源
    • 问题1:程序已提交YARN,但是无法运行,报错:Application is added to the scheduler and is not activated. User’s AM resource limit exceeded.

    yarn.scheduler.capacity.maximum-am-resource-percent=0.8
    
    
      - 配置文件:${HADOOP\_HOME}/etc/hadoop/capacity-scheduler.xml
      - 属性功能:指定队列最大可使用的资源容量大小百分比,默认为0.2,指定越大,AM能使用的资源越多
    
    • 问题2:程序提交,运行失败,报错:无法申请Container
    yarn.scheduler.minimum-allocation-mb=512
    
    
      - 配置文件:${HADOOP\_HOME}/etc/hadoop/yarn-site.xml
      - 属性功能:指定AM为每个Container申请的最小内存,默认为1G,申请不足1G,默认分配1G,值过大,会导致资源不足,程序失败,该值越小,能够运行的程序就越多
    
    • 问题3:怎么提高YARN集群的并发度?

      • 物理资源、YARN资源、Container资源、进程资源
      • YARN资源配置
      yarn.nodemanager.resource.cpu-vcores=8
      yarn.nodemanager.resource.memory-mb=8192
      
      
      • Container资源
      yarn.scheduler.minimum-allocation-vcores=1
      yarn.scheduler.maximum-allocation-vcores=32
      yarn.scheduler.minimum-allocation-mb=1024
      yarn.scheduler.maximum-allocation-mb=8192
      
      
      • MR Task资源
      mapreduce.map.cpu.vcores=1
      mapreduce.map.memory.mb=1024
      mapreduce.reduce.cpu.vcores=1
      mapreduce.reduce.memory.mb=1024
      
      
      • Spark Executor资源
      --driver-memory  #分配给Driver的内存,默认分配1GB
      --driver-cores   #分配给Driver运行的CPU核数,默认分配1核
      --executor-memory #分配给每个Executor的内存数,默认为1G,所有集群模式都通用的选项
      --executor-cores  #分配给每个Executor的核心数,YARN集合和Standalone集群通用的选项
      --total-executor-cores NUM  #Standalone模式下用于指定所有Executor所用的总CPU核数
      --num-executors NUM #YARN模式下用于指定Executor的个数,默认启动2个
      
      
    • 实现:修改问题1中的配置属性

      • 注意:修改完成,要重启YARN

      image-20210928200550336[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-jgRIa2kT-1673426702988)(Day2_数仓设计及数据采集.assets/image-20210822085238536.png)]

  • 小结

    • 实现YARN的资源调度配置

03:MR的Uber模式

  • 目标:了解MR的Uber模式的配置及应用

  • 实施

    • Spark为什么要比MR要快

      • MR慢
    • 只有Map和Reduce阶段,每个阶段的结果都必须写入磁盘

      • 如果要实现Map1 -> Map2 -> Reduce1 -> Reduce2
      • Mapreduce1:Map1
      • MapReduce2:Map2 -> Reduce1
      • Mapreduce3:Reduce2
    • MapReduce程序处理是进程级别:MapTask进程、ReduceTask进程

    • 问题:MR程序运行在YARN上时,有一些轻量级的作业要频繁的申请资源再运行,性能比较差怎么办?

      • Uber模式
    • 功能:Uber模式下,程序只申请一个AM Container:所有Map Task和Reduce Task,均在这个Container中顺序执行

    image-20210822091155998

      - 默认不开启
    
    • 配置:${HADOOP_HOME}/etc/hadoop/mapred-site.xml
    mapreduce.job.ubertask.enable=true
    #必须满足以下条件
    mapreduce.job.ubertask.maxmaps=9
    mapreduce.job.ubertask.maxreduces=1
    mapreduce.job.ubertask.maxbytes=128M
    yarn.app.mapreduce.am.resource.cpu-vcores=1
    yarn.app.mapreduce.am.resource.mb=1536M
    
    
    • 特点

      • Uber模式的进程为AM,所有资源的使用必须小于AM进程的资源
      • Uber模式条件不满足,不执行Uber模式
      • Uber模式,会禁用推测执行机制
  • 小结

    • 了解MR的Uber模式的配置及应用

04:Sqoop采集数据格式问题

  • 目标掌握Sqoop采集数据时的问题

  • 路径

    • step1:现象
    • step2:问题
    • step3:原因
    • step4:解决
  • 实施

    • 现象

      • step1:查看Oracle中CISS_SERVICE_WORKORDER表的数据条数
      select count(1) as cnt from CISS_SERVICE_WORKORDER;
      
      
      • step2:采集CISS_SERVICE_WORKORDER的数据到HDFS上sqoop import
        –connect jdbc:oracle:thin:@oracle.bigdata.cn:1521:helowin
        –username ciss
        –password 123456
        –table CISS4.CISS_SERVICE_WORKORDER
        –delete-target-dir
        –target-dir /test/full_imp/ciss4.ciss_service_workorder
        –fields-terminated-by “\001”
        -m 1
    
    - step3:Hive中建表查看数据条数
    
    - 进入Hive容器
    
      ```
    docker exec -it hive bash
      ```
    
    - 连接HiveServer
    
      ```
      beeline -u jdbc:hive2://hive.bigdata.cn:10000 -n root -p 123456
      ```
    
    - 创建测试表
    
      ```sql
      create external table test_text(
      line string
      )
      location '/test/full_imp/ciss4.ciss_service_workorder';
      ```
    
    - 统计行数
    
      ```
      select count(*) from test_text;
      ```
    
    
    
    • 问题:Sqoop采集完成后导致HDFS数据与Oracle数据量不符

    • 原因

      • sqoop以文本格式导入数据时,默认的换行符是特殊字符
      • Oracle中的数据列中如果出现了\n、\r、\t等特殊字符,就会被划分为多行
      • Oracle数据
      id			name				age
      001			zhang\nsan			18
      
      
      • Sqoop遇到特殊字段就作为一行
      001			zhang
      san			18
      
      
      • Hive
      id			name				age
      001			zhang 
      san			18
      
      
    • 解决

      • 方案一:删除或者替换数据中的换行符
        • –hive-drop-import-delims:删除换行符
        • –hive-delims-replacement char:替换换行符
        • 不建议使用:侵入了原始数据
      • 方案二:使用特殊文件格式:AVRO格式
  • 小结

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

方案二:使用特殊文件格式:AVRO格式

  • 小结

[外链图片转存中…(img-FH8P3ZN3-1714289324484)]
[外链图片转存中…(img-6rjvjkVS-1714289324485)]
[外链图片转存中…(img-iT2Xb5dA-1714289324485)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值