MIA文献阅读 —— 深度学习在医学图像分析中的最新进展及临床应用【2024】_再现性;深度学习(1)

本文回顾了深度学习在医学图像分析中的最新进展,尤其是无监督和半监督学习方法在解决注释数据不足问题上的应用。深度学习模型在疾病检测、分割、检测和图像配准等任务中表现出色,但受限于大规模注释数据的缺乏。无监督学习如自编码器在特征学习和降维中发挥作用,变分自编码器(VAE)则通过概率模型学习更复杂的表示。条件VAE和GMVAE等扩展方法进一步增强了模型的表示能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0 摘要

深度学习在开发新的医学图像处理算法方面获得了广泛的研究兴趣,基于深度学习的模型在各种医学成像任务中非常成功,以支持疾病检测和诊断。尽管取得了成功,但深度学习模型在医学图像分析中的进一步改进主要是由于缺乏大规模和良好注释的数据集。在过去的五年中,许多研究都集中在解决这一挑战上。在本文中,我们对这些最新的研究进行了回顾和总结,以提供深度学习方法在各种医学图像分析任务中的应用的全面概述。重点介绍了基于分类分割检测图像配准 等不同应用场景的无监督和半监督深度学习在医学图像分析中的最新进展和贡献。我们还讨论了主要的技术挑战,并提出了未来研究工作中可能的解决方案。

1 引言

在目前的临床实践中,癌症和/或许多其他疾病的检测和诊断的准确性取决于个别临床医生(例如放射科医生、病理学家)的专业知识(Kruger等人,1972年),这导致阅读和解释医学图像的读者之间存在很大差异。为了解决和克服这一临床挑战,许多计算机辅助检测和诊断(CAD)方案已经开发和测试,旨在帮助临床医生更有效地读取医学图像,并以更准确和客观的方式做出诊断决策。这种方法的科学原理是,使用计算机辅助定量图像特征分析可以帮助克服临床实践中的许多负面因素,包括临床医生专业知识的广泛差异,人类专家的潜在疲劳以及缺乏足够的医疗资源。

虽然早期的CAD方案是在20世纪70年代发展起来的(Meyers et al, 1964;Kruger et al, 1972;Sezaki和Ukena, 1973), CAD方案的进展加速自20世纪90年代中期以来(Doi等人,1999),由于开发和集成更先进的机器学习方法或模型到CAD方案。对于传统的CAD方案,一个常见的开发过程包括三个步骤:目标分割、特征计算和疾病分类。例如,Shi等人(2008)开发了一种CAD方案来实现数字乳房x光片的质量分类。首先使用改进的主动轮廓算法从背景中分割出包含目标质量的roi (Sahiner et al ., 2001)。然后利用大量的图像特征量化病灶的大小、形态、边缘几何、纹理等特征。从而将原始像素数据转换为具有代表性的特征向量。最后,在特征向量上应用基于LDA(线性判别分析)的分类模型对肿块恶性肿瘤进行识别。

相比之下,对于基于深度学习的模型,roi内部的隐藏模式是通过深度神经网络的分层架构逐步识别和学习的(LeCun et al, 2015)。在这个过程中,输入图像的重要属性会逐渐被识别和放大,用于某些任务(如分类、检测),而不相关的特征会被衰减和过滤掉。例如,描绘可疑肝脏病变的MRI图像带有像素阵列(Hamm等人,2019),每个条目被用作深度学习模型的一个输入特征。模型的前几层可以初步获得一些基本的病变信息,如肿瘤的形状、位置和方向。下一批层可以识别并保持与病变恶性相关的特征(如形状、边缘不规则),而忽略无关的变化(如位置)。相关特征将由后续更高层以更抽象的方式进一步处理和组合。当增加层数时,可以实现更高层次的特征表示。在整个过程中,隐藏在原始图像中的重要特征被基于一般神经网络的模型以自学的方式识别出来,从而不需要人工开发特征。

由于其巨大的优势,深度学习相关方法已经成为CAD领域的主流技术,并被广泛应用于各种任务中,如疾病分类(Li et al ., 2020a;Shorfuzzaman and Hossain, 2021;张等,2020a;Frid-Adar等,2018a;Kumar等人,2016,2017),ROI分割(Alom等人,2018;Yu et al ., 2019;Fan et al ., 2020),医学目标检测(Rijthoven et al ., 2018;Mei等,2021;Nair等,2020;Zheng et al ., 2015)和图像配准(Simonovsky et al ., 2016;Sokooti et al, 2017;Balakrishnan et al, 2018)。在各种深度学习技术中,监督学习最早被用于医学图像分析。虽然它已经成功地应用于许多应用中(Esteva等人,2017;Long等人,2017),在许多情况下,监督模型的进一步部署主要受到大多数医疗数据集规模有限的阻碍。与计算机视觉中的常规数据集相比,医学图像数据集通常包含相对较少的图像(例如,少于10,000),并且在许多情况下只有一小部分图像被专家注释。为了克服这一限制,无监督和半监督学习方法在过去三年中受到了广泛的关注,它们能够(1)生成更多用于模型优化的标记图像,(2)从未标记的图像数据中学习有意义的隐藏模式,以及(3)为未标记的数据生成伪标签。

已经有很多优秀的评论文章总结了深度学习在医学图像分析中的应用。Litjens等人(2017)和Shen等人(2017)回顾了相对早期的深度学习技术,这些技术主要基于监督方法。最近,Yi等人(2019)和Kazeminia等人(2020)回顾了生成对抗网络在不同医学成像任务中的应用。Cheplygina等人(2019)调查了如何在诊断或分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值