| 大数据分析案例-基于决策树算法构建员工离职预测模型 |
| 大数据分析案例-基于KNN算法对茅台股票进行预测 |
| 大数据分析案例-基于多元线性回归算法构建广告投放收益模型 |
| 大数据分案例-基于随机森林算法构建返乡人群预测模型 |
| 大数据分析案例-基于决策树算法构建金融反欺诈分类模型 |
以往做了很多期数据分析的案例项目,今天简单总结一下在如今商业领域的数据分析业务全流程步骤,希望对学习数据分析的小伙伴有所帮助。
商业数据分析总体分为三个阶段、六个步骤。
三个阶段:
- 构建问题
- 分析、解决问题
- 传达结果并行动
六个步骤:
- 识别问题
- 总结发现
- 建模
- 收集数据
- 分析数据
- 传达结果并行动
阶段一
在第一阶段构建问题这,常用的模型为SCQ模型,Situation情景、Complication矛盾、Question问题,该模型是用于复杂报告中的思维分析方式, 可以帮助我们寻找问题的关键突破口。举个栗子,某多多目前的年交易用户数已经是国内最高的app(S),接下来它会面临一个矛盾,是继续做用户增长呢?还是提升用户的RMB值?(C)这时候我们会把矛盾总结成一个问题(Q)。
阶段二
在第二阶段主要遵循以下流程:
1.明确问题核心
- 优先考虑核心问题
- 跟你的上级/客户对焦
- 善用SCQ模型和问题树
- 巧用二八法则
2.围绕假设分析
- 以假设驱动问题解决
- 寻找最合适的分析路径
- 灵活应对数据局限
3.制定方案执行
- 依据目标出发
- 了解执行责任
- 初步模拟输出
- 跟你的上级/客户对焦
4.问题深入解读
- 锻炼良好品质(毅力、创意、智慧)
- 剖析问题(不局限于常规分析)
阶段三
在第三阶段中,常用的三种传达结果方式为:归纳推理(根据分析的结论进行推理,来说明某事情的重要性等)、演绎推理(通过结论推导会发生什么、基于某个动作会带来什么结果或某指标的变化)、整体推理(归纳和演绎的结合)。
Step 1识别问题
这一步的要解决的核心问题是:了解问题是什么以及这个问题为什么重要?
比如我们遇到了一个项目或案例,首先要思考我们要解决的问题是什么?它是一个什么类型的问题?在这个过程中,我们可能会得出好几个问题,接下来就需要选出一个最核心的问题,并且需要去询问客户或上级这个核心的问题是否是他们关注的问题,这一步是不可或缺的,因为我们做数据分析最后都是要与业务相挂钩。
Step 2总结发现
这一步的要解决的核心问题是:以前是怎么定义和解决这些问题的?
在识别问题之后,我们需要有一个总结的发现,总结历史上过往的过程中,这个问题有没有被出现过,别人是怎么解决的?得出了什么结论,为什么现在还存在?所以我们需要有一个这样的回顾和总结,这样我们才能真正发现出别人没有做好的原因在哪,或者说它能否成为一个问题,以及是不是一个关键的问题。
Step 3建模
模型是某个现象或问题的一种有目的性的简化呈现
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**