使用flink的standalone模式同步Kafka的数据到clickhouse(1)

CREATE TABLE
  ods_countlyV2 (
    appKey String,
    appVersion String,
    deviceId String,
    phone_no String
  ) ENGINE = MergeTree ()
ORDER BY
  (appKey, appVersion, deviceId, phone_no);

8.起一个Kafka生产者发送一条消息,然后观察clickhouse对应表里的情况

9.观察clickhouse表里数据的情况

#代码

1.主程序类

package com.kszx;

import com.alibaba.fastjson.JSON;
import com.kszx.Mail;
import com.kszx.MyClickHouseUtil;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;

import java.util.HashMap;
import java.util.Properties;


public class FlinkSinkClickhouse {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.enableCheckpointing(5000);
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

        // source
        String topic = "topic_test2";

        Properties props = new Properties();
        // 设置连接kafka集群的参数
        props.setProperty("bootstrap.servers", "172.xx.xxx.x:9092,172.xx.xxx.x:9092,172.xx.xxx.x:9092");

        // 定义Flink Kafka Consumer
        FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<String>(topic, new SimpleStringSchema(), props);

        consumer.setStartFromGroupOffsets();
        consumer.setStartFromEarliest();    // 设置每次都从头消费

        // 添加source数据流
        DataStreamSource<String> source = env.addSource(consumer);
        source.print("111");
        System.out.println(source);
        SingleOutputStreamOperator<Mail> dataStream = source.map(new MapFunction<String, Mail>() {
            @Override
            public Mail map(String value) throws Exception {
                HashMap<String, String> hashMap = JSON.parseObject(value, HashMap.class);
                // System.out.println(hashMap);
                String appKey = hashMap.get("appKey");
                String appVersion = hashMap.get("appVersion");
                String deviceId = hashMap.get("deviceId");
                String phone_no = hashMap.get("phone_no");
                Mail mail = new Mail(appKey, appVersion, deviceId, phone_no);
                // System.out.println(mail);
                return mail;
            }
        });
        dataStream.print();

        // sink
        String sql = "INSERT INTO testmaxwell1.ods_countlyV2 (appKey, appVersion, deviceId, phone_no) " +
                "VALUES (?, ?, ?, ?)";
        MyClickHouseUtil ckSink = new MyClickHouseUtil(sql);
        dataStream.addSink(ckSink);


        env.execute();
    }
}

2.工具类写入clickhouse

package com.kszx;

import com.kszx.Mail;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import ru.yandex.clickhouse.ClickHouseConnection;
import ru.yandex.clickhouse.ClickHouseDataSource;
import ru.yandex.clickhouse.settings.ClickHouseProperties;
import ru.yandex.clickhouse.settings.ClickHouseQueryParam;


import java.sql.PreparedStatement;
import java.util.HashMap;
import java.util.Map;

public class MyClickHouseUtil extends RichSinkFunction<Mail> {
    private ClickHouseConnection conn = null;

    String sql;

    public MyClickHouseUtil(String sql) {
        this.sql = sql;
    }

    @Override
    public void open(Configuration parameters) throws Exception {
        super.open(parameters);
        return ;
    }

    @Override
    public void close() throws Exception {
        super.close();
        if (conn != null)
        {
            conn.close();
        }
    }

    @Override
    public void invoke(Mail mail, Context context) throws Exception {

        String url = "jdbc:clickhouse://172.xx.xxx.xxx:8123/testmaxwell1";
        ClickHouseProperties properties = new ClickHouseProperties();
        properties.setUser("default");
        properties.setPassword("xxxxxx");
        properties.setSessionId("default-session-id2");

        ClickHouseDataSource dataSource = new ClickHouseDataSource(url, properties);
        Map<ClickHouseQueryParam, String> additionalDBParams = new HashMap<>();

        additionalDBParams.put(ClickHouseQueryParam.SESSION_ID, "new-session-id2");

        try {
            conn = dataSource.getConnection();
            PreparedStatement preparedStatement = conn.prepareStatement(sql);
            preparedStatement.setString(1,mail.getAppKey());
            preparedStatement.setString(2, mail.getAppVersion());
            preparedStatement.setString(3, mail.getDeviceId());
            preparedStatement.setString(4, mail.getPhone_no());

            preparedStatement.execute();
        }
        catch (Exception e){
            e.printStackTrace();
        }
    }
}

3.表属性类

package com.kszx;

//package com.demo.flink.pojo;

public class Mail {
    private String appKey;
    private String appVersion;
    private String deviceId;
    private String phone_no;

    public Mail(String appKey, String appVersion, String deviceId, String phone_no) {
        this.appKey = appKey;
        this.appVersion = appVersion;
        this.deviceId = deviceId;
        this.phone_no = phone_no;
    }

    public String getAppKey() {
        return appKey;
    }

    public void setAppKey(String appKey) {
        this.appKey = appKey;
    }

    public String getAppVersion() {
        return appVersion;
    }

    public void setAppVersion(String appVersion) {
        this.appVersion = appVersion;
    }

    public String getDeviceId() {
        return deviceId;
    }

    public void setDeviceId(String deviceId) {
        this.deviceId = deviceId;
    }

    public String getPhone_no() {
        return phone_no;
    }

    public void setPhone_no(String phone_no) {
        this.phone_no = phone_no;
    }

    @Override
    public String toString() {
        return "Mail{" +
                "appKey='" + appKey + '\'' +
                ", appVersion='" + appVersion + '\'' +
                ", deviceId='" + deviceId + '\'' +
                ", phone_no='" + phone_no + '\'' +
                '}';
    }

    public Mail of(String appKey, String appVersion, String deviceId, String phone_no)
    {
        return new Mail(appKey, appVersion, deviceId, phone_no);
    }
}

4.pom依赖(注意打包在服务器上运行时会和flink的lib目录下的log4j依赖冲突的问题,如果在服务器上执行jar包时依赖冲突报错的话,最好屏幕代码里的依赖,保留flink原版lib下的依赖)

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.kszx</groupId>
    <artifactId>flink1kc</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>1.11.1</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_2.11</artifactId>
            <version>1.11.1</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka_2.11</artifactId>
            <version>1.11.1</version>
        </dependency>



        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-api-java-bridge_2.11</artifactId>
            <version>1.11.1</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.10</artifactId>
            <version>1.3.2</version>
        </dependency>

        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.59</version>
        </dependency>


        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka_2.11</artifactId>
            <version>1.0.2</version>
        </dependency>

        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>1.0.2</version>
        </dependency>

        <!-- 写入数据到clickhouse -->
        <dependency>
            <groupId>ru.yandex.clickhouse</groupId>
            <artifactId>clickhouse-jdbc</artifactId>
            <version>0.1.54</version>
        </dependency>




    </dependencies>



**自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。**

**深知大多数大数据工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!**

**因此收集整理了一份《2024年大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。**
![img](https://img-blog.csdnimg.cn/img_convert/7b0657a9a39b5dd7bea33d589ddf70d2.png)
![img](https://img-blog.csdnimg.cn/img_convert/39e3da8fa4def84e903e09ceffb2004f.png)
![img](https://img-blog.csdnimg.cn/img_convert/5821a2a5bed45af8b1f24175b37dfc0d.png)
![img](https://img-blog.csdnimg.cn/img_convert/d2c391635226790370921f51f56933dc.png)
![img](https://img-blog.csdnimg.cn/img_convert/21f6368cd868874018b1b9bbe3b6afd8.png)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!**

**由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新**

**如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)**
![img](https://img-blog.csdnimg.cn/img_convert/219b0cc6a38a94bc4d093de960b3e34e.png)

g-2CeaKMz9-1712880424034)]
[外链图片转存中...(img-HLjLqjoX-1712880424034)]
[外链图片转存中...(img-Z9Soj0UF-1712880424035)]

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!**

**由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新**

**如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)**
[外链图片转存中...(img-rvGwplhW-1712880424035)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值