网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
//11111111111111111111111111110110 - -10的补码
//FFFFFFF6
return 0;
}
![在这里插入图片描述](https://img-blog.csdnimg.cn/d1e582fef72c4c32bf5087b7af8fed24.png)
![在这里插入图片描述](https://img-blog.csdnimg.cn/be90d242ee624f00add9bbfdcc3fca93.png)
调试后我们可以看到对于a和b分别存储的是补码。但是我们发现顺序有点不对劲。
这是又为什么?
### 2.2 大小端介绍
**什么大端小端:**
>
> 大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;
> 小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中
>
>
>
画图演示:
![在这里插入图片描述](https://img-blog.csdnimg.cn/02c521ed01e8437ca7534ce7c2e90cf9.png)
**为什么有大端和小端:**
>
> 为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元 都对应着一个字节,一个字节为8 bit。但是在C语言中除了8 bit的char之外,还有16 bit的short 型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因 此就导致了大端存储模式和小端存储模式。
> 例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为 高字节, 0x22为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高 地址中,即 0x0011中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式 还是小端模式
>
>
>
百度2015年系统工程师笔试题:
>
> 请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。
>
>
>
//如果是大端返回0
//如果是小端返回1
#include <stdio.h>
int check_sys()
{
int i = 1;
return (*(char*)&i);
}
int main()
{
int ret = check_sys();
if (ret == 1)
{
printf(“小端\n”);
}
else
{
printf(“大端\n”);
}
return 0;
}
运行结果:
![在这里插入图片描述](https://img-blog.csdnimg.cn/cd4c40782a6b4372ab581603b67e4f9d.png)
### 2.3 练习
**练习1**
//1.输出什么?
#include <stdio.h>
int main()
{
char a = -1;
//10000000000000000000000000000001 原码
//11111111111111111111111111111110 反码
//11111111111111111111111111111111 补码
//11111111 - 截断
//整型提升
//11111111111111111111111111111111
//11111111111111111111111111111110
//10000000000000000000000000000001 -1
signed char b = -1;
//signed char与 char结果一样
unsigned char c = -1;
//11111111 - 截断
//00000000000000000000000011111111无符号数高位直接补零
printf(“a=%d,b=%d,c=%d”, a, b, c);
return 0;
}
char的二进制序列计算
![在这里插入图片描述](https://img-blog.csdnimg.cn/4cefa98389ed48e483ba72ace6c11c80.png)
有符号char的取值范围是 (-128~127)
无符号char的取值范围是 (0~255)
![在这里插入图片描述](https://img-blog.csdnimg.cn/e8bc912576b44d30a20b97e5482cafee.png)
**%d与%u的输出结果**
#include <stdio.h>
int main()
{
unsigned int num = -10;
//10000000000000000000000000001010 原码
//11111111111111111111111111110101 反码
//11111111111111111111111111110110 补码
//无符号数原码补码相同
printf(“%d\n”, num);
printf(“%u\n”, num);
return 0;
}
![在这里插入图片描述](https://img-blog.csdnimg.cn/0e902cf074ff431980435252c7a862c2.png)
![在这里插入图片描述](https://img-blog.csdnimg.cn/8d8049acc81e4a69b2e957e1b61e4aad.png)
**练习2**
#include <stdio.h>
int main()
{
char a = -128;
printf(“%u\n”, a);
return 0;
}
![在这里插入图片描述](https://img-blog.csdnimg.cn/0ff0a139ad1b40cea75b0f79530c7aae.png)
**练习3**
#include <stdio.h>
int main()
{
char a = 128;
printf(“%u\n”, a);
return 0;
}
运算过程与练习2的过程相似
运行结果
![在这里插入图片描述](https://img-blog.csdnimg.cn/5989fee13b9c4f11add9f0a126b2e13a.png)
**练习4**
#include <stdio.h>
int main()
{
int i = -20;
unsigned int j = 10;
//10000000 00000000 00000000 00010100
//11111111 11111111 11111111 11101011
//11111111 11111111 11111111 11101100 - (-20)补码
//00000000 00000000 00000000 00001010 - (10)原码
//11111111 11111111 11111111 11110110 - (i+j)结果,计算机的结果,是存在内存中,是补码
//10000000 00000000 00000000 00001010 - 补码变成原码
//计算结果 -10
printf(“%d\n”, i + j);
return 0;
}
**练习5**
#include <stdio.h>
#include <windows.h>
int main()
{
unsigned int i;
for (i = 9; i >= 0; i–)
{
printf(“%u\n”, i);
Sleep(1000);//单位是毫秒
}
return 0;
}
打印结果:
![在这里插入图片描述](https://img-blog.csdnimg.cn/142bdeb7e97146f58226ff18bcb6f8c7.png)
>
> Sleep(1000)用来降低打印速度的头文件为#include <windows.h>
>
>
>
>
> unsigned 用来打印无符号数,所以当i=-1时,unsigned int i并不会认为i是一个负数,只会认为他是一个很大的正数,-1的补码为 **11111111111111111111111111111111**
> 32个全一在计算机的值如下
> ![在这里插入图片描述](https://img-blog.csdnimg.cn/b34676cdd1f44561b05d9c782229f189.png)
>
>
>
**练习6**
#include <stdio.h>
//char 类型的取值范围是 -128~127
int main()
{
char a[1000];
int i;
for (i = 0; i < 1000; i++)
{
a[i] = -1 - i;
}
//-1 -2 -3 -4 -5 -6 …-127 -128 -129 … -998 -999 -1000
//char -1 -2 -3 -128 127 126 … 3 2 1 0 -1 -2 -3 … -128 127 …
//1000个值
printf(“%d”, strlen(a));
//strlen 求字符串长度,找到是\0,\0的ASCII码值是0.
return 0;
}
运行结果;
![在这里插入图片描述](https://img-blog.csdnimg.cn/9e018ad138bc4e0bbdc3993df317a1c2.png)
二进制加一减一的图解
![在这里插入图片描述](https://img-blog.csdnimg.cn/ec0adce01e8642c886d77740211290d1.png)
**练习7**
#include <stdio.h>
unsigned char i = 0;
//0~255
int main()
{
for (i = 0; i <= 255; i++)
{
printf(“hello world\n”);
}
return 0;
}
>
> i的范围是0~255,所以循环里的内容恒成立,所以结果为死循环。
>
>
>
## 3. 浮点型在内存中的存储
常见的浮点数:
>
> 3.14159
> 1E10
> 浮点数家族包括: float、double、long double 类型。
> 浮点数表示的范围:float.h中定义
>
>
>
![在这里插入图片描述](https://img-blog.csdnimg.cn/1ded224a031c4d91b2580666672fdf73.png)
### 3.1 一个例子
浮点数存储的例子:
#include <stdio.h>
int main()
{
int n = 9;
//00000000000000000000000000001001 - 9的补码
float* pFloat = (float*)&n;
printf(“n的值为:%d\n”, n);
printf(“*pFloat的值为:%f\n”, *pFloat);
*pFloat = 9.0;
printf(“num的值为:%d\n”, n);
printf(“*pFloat的值为:%f\n”, *pFloat);
return 0;
}
输出结果:
![在这里插入图片描述](https://img-blog.csdnimg.cn/d428c160987448e096040dcccb06a0a8.png)
### 3.2 浮点数存储的规则
num 和 \*pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?
要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。
详细解读:
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
>
> * (-1)^S \* M \* 2^E
> * (-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。
> * M表示有效数字,大于等于1,小于2。
> * 2^E表示指数位。
>
>
>
以5.5举例来说
十进制的5.5,写成二进制是 101.1
![在这里插入图片描述](https://img-blog.csdnimg.cn/4c5a118e73804c3fb20d1d700f5dbda0.png)
**IEEE 754规定:**
对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。
![在这里插入图片描述](https://img-blog.csdnimg.cn/c8023cda094145fa92ae388deb617e03.png)
对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。
![在这里插入图片描述](https://img-blog.csdnimg.cn/1cbfd10b431148e087811e89d2a2c009.png)
**IEEE 754对有效数字M和指数E,还有一些特别规定。**
前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。
以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。
**至于指数E,情况就比较复杂。
首先,E为一个无符号整数(unsigned int)**
这意味着,如果E为8位,它的取值范围为0255;如果E为11位,它的取值范围为02047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。
比如,2^10的E是10,所以保存成32位浮点数时,必须保存10+127=137,即10001001.
例如:
#include <stdio.h>
int main()
{
float f = 5.5f;
//101.1
//(-1)^0 * 1.011 * 2^2 科学表现形式
//01000000101100000000000000000000 二进制表现形式
//40b00000 十六进制表现形式
//
return 0;
}
在内存中的存储为十六进制表现形式(由于大小端的原因,顺序有所不同)
![在这里插入图片描述](https://img-blog.csdnimg.cn/e69aa586c2c1473a8729f979e1139562.png)
然后,指数E从内存中取出还可以再分成三种情况:
**E不全为0或不全为1**
>
> 这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将 有效数字M前加上第一位的1。 比如:
> 0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为
> 1.0\*2^(-1),其阶码为-1+127=126,表示为 01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,
> 则其二进 制表示形式为:
>
>
>
0 01111110 00000000000000000000000
**E全为0**
>
> 这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,
> 有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于 0的很小的数字。
>
>
>
**E全为1**
>
> 这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);
>
>
>
好了,关于浮点数的表示规则,就说到这里。
**解释前面的题目:**
下面,让我们回到一开始的问题:为什么 0x00000009 还原成浮点数,就成了0.000000 ?
首先,将 0x00000009 拆分,得到第一位符号位s=0,后面8位的指数 E=00000000,最后23位的有效数字 M=000 0000 0000 0000 0000 1001。
>
> 9 -> 0000 0000 0000 0000 0000 0000 0000 1001
>
>
>
由于指数E全为0,所以符合上一节的第二种情况。因此,浮点数V就写成:
![img](https://img-blog.csdnimg.cn/img_convert/28bc2665518f52cec1ce9bdb5ff6c4ae.png)
![img](https://img-blog.csdnimg.cn/img_convert/74f5c43d21018df160b65d0b5dc33f81.png)
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
数 E=00000000,最后23位的有效数字 M=000 0000 0000 0000 0000 1001。
>
> 9 -> 0000 0000 0000 0000 0000 0000 0000 1001
>
>
>
由于指数E全为0,所以符合上一节的第二种情况。因此,浮点数V就写成:
[外链图片转存中...(img-70pkXwFS-1715808423188)]
[外链图片转存中...(img-fU6BSIzi-1715808423188)]
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**