自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1274)
  • 收藏
  • 关注

原创 一文搞懂七种大模型微调的方法,零基础入门到精通,看这篇就够了!赶紧收藏!

文章介绍了五种前沿的大模型微调技术,旨在提升模型的精准性和效率。这些技术包括:1️⃣ LoRA,通过低秩矩阵减少计算负担;2️⃣ Adapter-Tuning,使用小型适配器实现任务转换;3️⃣ Prefix-Tuning,通过前缀向量引导模型注意力;4️⃣ P-Tuning,利用连续提示进行微调;5️⃣ Prompt-Tuning,将任务提示融入模型输入。此外,文章还提供了大模型学习的系统路线,从基础到高级应用,以及640份AI大模型报告合集和经典PDF资源,帮助读者深入理解和应用这些技术。这些资源为AI

2025-05-20 11:22:38 473

原创 深入浅出大模型:预训练、监督微调、强化学习、RLHF

2025年年初随着DeepSeek的爆火,人们对LLM(Large Language Model,大语言模型)兴趣与日激增,很多人觉得LLM常常显得近乎魔法般神奇。接下来我们就来揭开LLM的神秘面纱。我想退一步,拆解一下LLM的基本原理——深入探讨这些模型是如何构建、训练和微调,最终成为我们今天所使用的AI系统的。这篇深入解析是我一直想做的,如果你有时间,本文绝对值得一看。

2025-05-20 11:21:09 674

原创 大模型系列之LLaMA Factory微调学习

LLaMA Factory 是一个开源的微调框架,旨在帮助开发者高效地微调和部署大型语言模型(LLM),如 LLaMA、BLOOM、Mistral 等。它通过提供用户友好的 LlamaBoard Web 界面,降低了使用门槛,使得即使没有深厚编程背景的用户也能轻松进行模型微调和推理操作。LLaMA Factory 支持多种微调方法,包括全参微调、冻结微调和轻量化的 LoRA 微调,能够显著降低显存需求。文章详细介绍了如何搭建环境、选择微调参数(如学习率、截断长度和计算类型),并通过具体示例展示了如何使用 L

2025-05-20 11:19:49 325

原创 利用大模型构造数据集,并微调大模型

请根据已编辑的文章内容,生成文章摘要本文介绍了一种利用大模型构造数据集并微调大模型的方法。首先,文章指出在微调大模型时,数据集的选择和构造是一个常见问题,尤其是当需要特定领域或个性化数据时。为了解决这一问题,作者提出了一种通过大模型自动生成问答对数据集的方法。具体步骤包括:设计系统Prompt和用户Prompt,利用大模型从文本中提取问答对,并通过代码实现文档处理和数据集生成。文章详细展示了如何构建Prompt、选择大模型(如GPT-3.5-16k)、以及使用LangChain等工具进行数据处理和输出解析

2025-05-20 11:18:29 579

原创 手把手教会你搭建属于自己的智能体

仿照官网示例,在使用时需要修改Authorization、bot_id以及stream,其中Authorization修改为配置好的个人令牌,bot_id修改为智能体编号,编号在智能体编排页面网址里,stream代表是否流式输出,建议设置为true。在Coze IDE中创建是指在Coze的在线编程页面去创建插件,你可以在线写代码,在线调试。,端侧插件主要用于需要和硬件交互的情况,例如你对语音助手说播放音乐,助手调用手机的播放音乐方法进行播放,端侧插件的代码都在硬件侧,并且在创建时需要知道硬件支持哪些指令。

2025-05-20 10:54:37 312

原创 大语言模型微调实战:LoRA技术详解,掌握高效模型调整的精髓!

在本文中,我们探讨了 LoRA 微调方法,并以 StarCoder 模型的微调为例介绍了实践过程。通过实践过程的经验来为大家展示一些细节及需要注意的点,希望大家也能通过这种低资源高效微调方法微调出符合自己需求的模型。

2025-05-08 14:03:26 404

原创 一文彻底搞懂大模型 - LLaMA-Factory

如何高效地微调和部署大型语言模型(LLM)?什么是LLaMA-Factory?LLaMA-Factory,全称Large Language Model Factory,即大型语言模型工厂。它支持多种预训练模型和微调算法,提供了一套完整的工具和接口,使得用户能够轻松地对_预训练的模型进行定制化的训练和调整_,以适应特定的应用场景,如_智能客服、语音识别、机器翻译_等。

2025-05-08 14:02:50 599

原创 一张图看懂AI技术架构!开发、训练、部署全链路深度解析!

人工智能(AI)技术的快速发展,使得企业在AI模型的开发、训练、部署和运维过程中面临前所未有的复杂性。从数据管理、模型训练到应用落地,再到算力调度和智能运维,一个完整的AI架构需要涵盖多个层面,确保AI技术能够高效、稳定地运行。本文将基于AI技术架构全景图,深入剖析AI的开发工具、AI平台、算力与框架、智能运维四大核心部分,帮助大家系统性地理解AI全生命周期管理。在AI开发过程中,开发工具的完备程度决定了AI项目的开发效率和质量。本架构提供了两大类AI开发工具:针对大规模人工智能模型的开发,该架构提供了以下

2025-05-08 14:01:58 315

原创 2025 年AI八大预测与八大风口:AI 浪潮下的掘金机遇

2025 年,站在时代的前沿,一场由科技驱动的变革风暴正以排山倒海之势席卷而来,而 AI 无疑是这场风暴的核心力量,将重塑我们生活与经济的方方面面。今天,我们一起来深度剖析以下2025 年的八大预测以及八大风口,助你抢占先机,开启财富与成长的新征程。

2025-05-08 14:01:20 777

原创 教你5分钟本地部署部署AI大模型,让你从此以后再也不愁没有AI可用

随着人工智能(AI)和机器学习(ML)技术的迅猛发展,AI模型的规模和复杂度也在不断增加。这些大规模模型,如大型语言模型(LLMs)、计算机视觉模型和复杂的推荐系统,通常需要大量的计算资源来训练和推理。云计算平台提供了便捷的解决方案,但本地部署AI大模型有其独特的优势和必要性。大模型本地部署,顾名思义就是把大模型部署到我们本地的笔记本或者台式机上。

2025-05-08 14:00:04 392

原创 AI大模型:我为何选择转行?

最近研究了一下大模型相关的内容,决定从互联网的转行做大模型推理工程化相关的工作。所以简单说说我在这个决定中的思考过程。我本来是一个在大厂做推荐算法的工程师。收入在行业里面算是中游水平, 就这么一直干着似乎也没什么问题。但是互联网行业的岗位毕竟和公务员和事业单位比,不存在一个工作干一辈子的情况。这个工作能不能继续干完全取决于市场对于这个岗位有没有需求。但是推荐算法今年的情况就是,流量增长见顶,需求萎靡。

2025-05-06 14:20:33 980

原创 程序员转行大模型,真的是新时代的选择吗?

在2024年,程序员仍然是IT行业中备受追捧的职业。但随着技术的不断发展,就业市场对于程序员的技能要求也在不断变化。传统的编程技能虽然重要,但面对日新月异的人工智能技术,许多程序员开始思考如何转型,以适应市场的变化。许多程序员选择转行当下火热的大模型,这真的是新时代的正确选择么?答案是值得肯定的。

2025-05-06 14:16:58 1051

原创 2025年梦想转行成为大模型产品经理?这份全面指南助你一臂之力!

转行做大模型所面临的机会和挑战,以及如何把握和应对,如:大模型是AI领域的一个重要趋势,具有强大的泛化能力和适应能力,在多个任务和领域上表现出惊人的成就。大模型可以利用海量的数据来学习通用的知识和能力,从而在多个场景和需求上提供高效的解决方案。大模型可以带来更好的用户体验和商业价值,在各个行业和领域中创造更多的创新和变革转行做。大模型需要海量的数据和计算资源来训练和运行,对于硬件设备、网络带宽、存储空间等方面有很高的要求。

2025-05-06 14:16:06 523

原创 普通程序员如何转行大模型?一份详细攻略_转行大模型学习路

随着人工智能技术的快速发展,大模型(如GPT、BERT等)已经成为科技行业的热门领域。对于普通程序员来说,转行大模型领域不仅是一个职业发展的机会,也是提升技术能力的重要途径。本文将为你提供一份详细的转行攻略,帮助你从零开始进入大模型领域。在转行之前,首先需要明确自己的目标和方向。大模型领域涉及多个方向,包括但不限于:大模型开发:参与大模型的训练、微调和优化。大模型应用:将大模型应用于具体场景,如自然语言处理、计算机视觉等。大模型研究:从事大模型的理论研究,探索新的算法和架构。大模型工程:负责大模型的部署、运

2025-05-06 14:14:55 1090

原创 程序员转行做大模型,可以选择哪些岗位,非常详细收藏我这一篇就够了

模型研发工程师的核心任务是设计和开发新的深度学习模型架构。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。对于那些对模型架构有深入理解,喜欢创新和设计的程序员来说,模型研发工程师是一个理想的岗位。作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

2025-05-06 14:14:19 526

原创 AI-基于Langchain-Chatchat和chatglm3-6b部署私有本地知识库

自从去年GPT模型火爆以来,降低了很多个人和企业进入人工智能领域的门槛,对于大模型尤其是开源的大模型国内应该比较受关注和期待,毕竟高额的成本也能将不少人阻挡在门外,其次,大家都希望在产品中集成LLM的能力,结合业务来落地智能化应用,提升产品的竞争力,最直接的应用就是构建知识库。下面汇总了一下之前介绍的有关构建知识库相关的文章和视频,包含了开源和闭源多种不同的解决方案,从使用情况来看,因为都是开源产品,所以在架构和功能完整性上可能都不够全面,因为一直在持续的迭代过程。

2025-04-28 16:44:28 995

原创 大模型学习?别慌!我这有份独家私藏路线图,直接抄作业!

大模型学习之路, 道阻且长, 但只要你坚持下去, 一定会有收获。别忘了分享给身边的小伙伴!本路线图为你提供了学习大模型的全面指南, 从入门到进阶, 涵盖理论到应用。如果你懒得自己找资料, 我的路线图直接“抄作业”就对了!

2025-04-28 16:42:35 787

原创 【大模型书籍】25年一书通关LLM大模型,<大模型应用开发极简入门>_大模型 书籍 pdf 百度知道

大家好,今天给大家推荐一本大模型应用开发入门书籍《大模型应用开发极简入门》,本书对很多AI概念做了讲解和说明!

2025-04-28 16:40:25 902

原创 2025零基础转行大模型要多久?真的能学会吗?

随着人工智能技术的迅猛发展,AI大模型成为了当前最热门的技术领域之一。很多人对AI大模型既充满好奇又感到陌生,特别是对于那些完全没有编程基础的人来说,从零开始学习AI大模型似乎是一项艰巨的任务。但实际上,只要有足够的决心和正确的方法,任何人都有可能成为AI大模型领域的专家。本文将探讨从零基础学习AI大模型需要多长时间,以及如何确保你能够真正学会。

2025-04-28 16:38:55 683

原创 救命!真的不要盲目去自学AI大模型!!!

不要盲目去自学AI大模型!!!不要盲目去自学AI大模型!!!不要盲目去自学AI大模型!!!

2025-04-28 16:38:02 146

原创 快速搭建专业AI知识库的开源工具Ragflow,零基础入门到精通,看这篇就够了!赶紧收藏!

在大模型应用的蓬勃发展中,检索增强生成(Retrieval-Augmented Generation,RAG)技术占据了举足轻重的地位。它就像是大模型的智慧助手,通过从外部知识库中检索相关信息,并将其融入到大模型的回答生成过程中,有效提升了大模型回答的准确性、可靠性和时效性,在问答系统、智能客服、文档摘要等多个领域都发挥着关键作用。上图是一个常见的AI应用的数据流向图,文档分块之后向量化存储到向量数据库,然后输入文本内容,形成prompt,从向量数据库检索相关的知识背景,发送给LLM之后,返回结果。

2025-04-27 11:15:38 1121

原创 人工智能学习路径全攻略:AI入门必看,超详细!

人工智能包括机器学习和深度学习深度学习,而自然语言处理和计算机视觉正是人工智能领域热门的方向。**路径一:**如果你希望快速学习完进行项目实践,请直接学习深度学习,不过编程和数学基础还是要有的(之后如果遇到不懂的地方,单独学不懂的地方就可以了)**路径二:**一步一个脚印,扎扎实实从基础学起,逐步提高学习难度(后附学习大纲)在深入学习人工智能之前,你需要对这个行业有一个初步的了解,包括当前的发展趋势和关键技术。这样,你就能为接下来的学习做好准备。机器学习领域包含了众多算法,这些算法往往基于数学理论。

2025-04-27 11:14:58 909

原创 掌握推理大模型?这几个学习关键别错过,从零基础到精通,理论与实践结合的最佳路径!

学习推理大模型(如GPT-4、PaLM、LLaMA等)需要结合深度学习、自然语言处理(NLP)和逻辑推理的知识。:掌握线性代数、概率统计、微积分(如梯度下降)、信息论(如交叉熵)。:熟练使用Python,学习PyTorch或TensorFlow框架。:理解经典算法(如动态规划、搜索算法)和机器学习基础(如监督学习、无监督学习)。学习传统模型(如线性回归、SVM、决策树)。掌握深度学习基础:神经网络、反向传播、CNN/RNN、注意力机制。

2025-04-27 11:14:23 1021

原创 什么是大模型?一图全面了解大模型,附国内外知名大模型及240余家大模型清单!

AI大模型是“大数据+大算力+强算法”结合的产物,是一种能够利用大数据和神经网络来模拟人类思维和创造力的人工智能算法。它利用海量的数据和深度学习技术来理解、生成和预测新内容,通常情况下有数百亿乃至数万亿个参数,可以在不同的领域和任务中表现出智能。

2025-04-27 11:13:43 988

原创 初学者怎么入门大语言模型(LLM)?

大语言模型(LLM)是一门博大精深的学科,涉及到高等数学、python编程、PyTorch/Tensorflow/Onnx等深度学习框架……然而奇妙的是,越是看上去难得要死、一辈子都学不完的技术,入门起来却越是容易。正如阿瑟·克拉克的名言:足够先进的科技看上去与魔法无异。大语言模型先进得如同魔法,我们这些麻瓜也许一辈子都没法完全理解它。但乐观地看,既然大语言模型是魔法,那我们就把它当魔法用好了,用这个魔法发掘自己的天赋,兑现自己的价值。

2025-04-27 11:12:58 1306

原创 2025版最新大模型微调指南,零基础入门到精通,收藏这篇就够了

Prompt工程技术文章专栏系列已更新七章,涵盖了AI开发生态中的多种使用场景,并提供了足够实用的Prompt技巧。而现在,随着大模型调用变得越来越简单,tokens成本也大幅降低,AI开发者可以轻松进行API封装与二次开发。部分平台更是支持定制场景微调,推动着“AI+”模式在市场上蓬勃发展。本系列文章将开启“大模型微调”专栏,作为第一篇文章,我们将从基础概念入手,通俗易懂地讲解大模型微调技术的演变与发展,并通过简单的代码示例帮助大家理解微调的核心理念与方法。

2025-04-25 11:39:43 629

原创 2025版最新大模型微调指南,零基础入门到精通,收藏这篇就够了

Prompt工程技术文章专栏系列已更新七章,涵盖了AI开发生态中的多种使用场景,并提供了足够实用的Prompt技巧。而现在,随着大模型调用变得越来越简单,tokens成本也大幅降低,AI开发者可以轻松进行API封装与二次开发。部分平台更是支持定制场景微调,推动着“AI+”模式在市场上蓬勃发展。本系列文章将开启“大模型微调”专栏,作为第一篇文章,我们将从基础概念入手,通俗易懂地讲解大模型微调技术的演变与发展,并通过简单的代码示例帮助大家理解微调的核心理念与方法。

2025-04-25 11:35:02 1118

原创 你想在本地部署大模型吗?本地部署大模型的三种工具

人工智能的发展如火如荼,也让越来越多的人了解到人工智能;而对大部分人来说使用的都是第三方提供的客户端,不论是网页版,还是PC端或移动端。那么,我们怎么在本地部署一款大模型呢?下面就来介绍三种工具。

2025-04-25 11:33:45 929

原创 什么是大模型与智能体?2025版大模型入门到精通,收藏这篇就够了

一、大模型:人工智能的智慧引擎什么是大模型?大模型是一类参数规模巨大、结构复杂的机器学习模型。它主要通过学习海量数据来提取特征、进行推理,并生成新的内容。当前的主流大模型包括语言大模型、视觉大模型和多模态大模型,其中大语言模型(如GPT系列)因其广泛的自然语言处理能力而备受关注。在技术层面,大模型的优势体现在以下几个方面:强大的信息处理能力:通过对海量文本、图像等数据的训练,大模型能够高效分析、理解和生成内容。广泛的任务适应性:可以应用于语言生成、图像识别、语音处理等多个领域。

2025-04-25 11:33:00 1054

原创 LLM框架对比选择:MaxKB、Dify、FastGPT、RagFlow【RAG+AI工作流+Agent]

1.MaxKBMaxKB = Max Knowledge Base,是一款基于 LLM 大语言模型的开源知识库问答系统,旨在成为企业的最强大脑。它能够帮助企业高效地管理知识,并提供智能问答功能。想象一下,你有一个虚拟助手,可以回答各种关于公司内部知识的问题,无论是政策、流程,还是技术文档,MaxKB 都能快速准确地给出答案:比如公司内网如何访问、如何提交视觉设计需求等等1.1 简介开箱即用:支持直接上传文档、自动爬取在线文档,支持文本自动拆分、向量化、RAG(检索增强生成),智能问答交互体验好;

2025-04-25 11:32:06 955

原创 普通人,适合转行大模型吗?大模型的未来前景怎么样?

在当今时代,AI大模型的发展如火如荼,其在各行各业的应用日益广泛。那么,作为普通人,我们是否应该转行投身于大模型领域呢?本文将从以下几个方面阐述,为什么普通人应该转行大模型,以及大模型的未来前景如何。未来参与的人还是会越来越多,培训也会越来越多,现在是混沌的机会时期,可以进来插一竹杠,进入AI大模型时代的一个机会,当然未来它也会成为一个企业的基础工具。对于普通人那高薪而言,的确是一个机会,可能是传统岗位的基础上 + 5K,甚至更高回报。但。。

2025-04-24 14:42:10 745

原创 零基础学AI大模型要多久?真的能学会吗?

网络安全产业就像一个江湖,各色人等聚集。相对于欧美国家基础扎实(懂加密、会防护、能挖洞、擅工程)的众多名门正派,我国的人才更多的属于旁门左道(很多白帽子可能会不服气),因此在未来的人才培养和建设上,需要调整结构,鼓励更多的人去做“正向”的、结合“业务”与“数据”、“自动化”的“体系、建设”,才能解人才之渴,真正的为社会全面互联网化提供安全保障。

2025-04-24 14:41:34 776

原创 什么是大模型?一图全面了解大模型,附国内外知名大模型及240余家大模型清单!

AI大模型是“大数据+大算力+强算法”结合的产物,是一种能够利用大数据和神经网络来模拟人类思维和创造力的人工智能算法。它利用海量的数据和深度学习技术来理解、生成和预测新内容,通常情况下有数百亿乃至数万亿个参数,可以在不同的领域和任务中表现出智能。

2025-04-24 14:39:11 781

原创 大模型系列之LLaMA Factory微调学习

本文介绍了使用LLaMA Factory进行微调的步骤,包括环境搭建、数据准备、参数配置、训练和效果评估等,最终成功微调模型并使用Ollama部署,提升了模型表现,达到了预期的效果。有一点感受是跟之前接触的安全实验不太一样:大多数的安全实验都是我打了这个Payload,就一定会出现确定的结果,不管是弹计算器还是反弹Shell,一切都是确定的。而大模型的训练往往充满了玄学成分,可能需要多实验几次才知道什么是最优参数。

2025-04-24 14:38:34 919

原创 一文搞懂5种大模型微调的方法,零基础入门到精通,看这篇就够了!赶紧收藏!

1️⃣ LoRA:轻盈低秩,微调新风尚LoRA,作为大模型微调领域的璀璨新星,以其独特的低秩逼近技术闪耀登场。通过在模型层间巧妙添加低秩矩阵,LoRA不仅精准捕捉任务精髓,还极大减轻了计算与存储负担。无需大刀阔斧,细微调整间尽显智慧光芒。2️⃣ Adapter-Tuning:小巧适配器,任务转换高手想象一下,给庞大的预训练模型装上一个个小巧的“适配器”,它们就是Adapter-Tuning的精髓所在。这些可学习模块无缝融入模型,让模型在保留原有智慧的同时,轻松驾驭新任务。

2025-04-24 14:38:03 764

原创 一文搞懂5种大模型微调的方法,零基础入门到精通,看这篇就够了!赶紧收藏!

1️⃣ LoRA:轻盈低秩,微调新风尚LoRA,作为大模型微调领域的璀璨新星,以其独特的低秩逼近技术闪耀登场。通过在模型层间巧妙添加低秩矩阵,LoRA不仅精准捕捉任务精髓,还极大减轻了计算与存储负担。无需大刀阔斧,细微调整间尽显智慧光芒。2️⃣ Adapter-Tuning:小巧适配器,任务转换高手想象一下,给庞大的预训练模型装上一个个小巧的“适配器”,它们就是Adapter-Tuning的精髓所在。这些可学习模块无缝融入模型,让模型在保留原有智慧的同时,轻松驾驭新任务。

2025-04-22 11:42:01 1163

原创 深入浅出大模型:预训练、监督微调、强化学习、RLHF

2025年年初随着DeepSeek的爆火,人们对LLM(Large Language Model,大语言模型)兴趣与日激增,很多人觉得LLM常常显得近乎魔法般神奇。接下来我们就来揭开LLM的神秘面纱。我想退一步,拆解一下LLM的基本原理——深入探讨这些模型是如何构建、训练和微调,最终成为我们今天所使用的AI系统的。这篇深入解析是我一直想做的,如果你有时间,本文绝对值得一看。

2025-04-22 11:41:06 586

原创 大模型系列之LLaMA Factory微调学习

本文介绍了使用LLaMA Factory进行微调的步骤,包括环境搭建、数据准备、参数配置、训练和效果评估等,最终成功微调模型并使用Ollama部署,提升了模型表现,达到了预期的效果。有一点感受是跟之前接触的安全实验不太一样:大多数的安全实验都是我打了这个Payload,就一定会出现确定的结果,不管是弹计算器还是反弹Shell,一切都是确定的。而大模型的训练往往充满了玄学成分,可能需要多实验几次才知道什么是最优参数。

2025-04-22 11:39:33 1156

原创 利用大模型构造数据集,并微调大模型

目前大模型的微调方法有很多,而且大多可以在消费级显卡上进行,每个人都可以在自己的电脑上微调自己的大模型。但是在微调时我们时常面对一个问题,就是数据集问题。网络上有许多开源数据集,但是很多时候我们并不想用这些数据集微调模型,我们更希望使用某本书、某个作者的作品、我们自己的聊天记录、某个角色的对话来微调模型。用于微调的数据通常是成千上万的问答对,如果手工搜集,需要花费大量时间。文本将介绍一种方式,利用大模型来构造自己的数据集,并使用我们构造的数据集来微调大模型。

2025-04-22 11:38:40 961

原创 一文学会基于LangChain开发大模型RAG知识问答应用

(“system”,“你是一个信息整理归纳助手,在回答用户的问题时,你需要参考上下文信息,结合用户的问题以及上下文信息,你归纳出简练、准确的答案,简练是指不要加入与问题的答案无关的语言,准确是指答案要严格与上下文保持一致。通俗来讲,就是在用户提的问题的基础上,引入相关资料信息,把“问题+相关资料” 一起给大模型,让大模型在参考资料的约束或提示下回答问题而不是随意发挥,从而期望大模型生成质量更高、更准确的答案,改善大模型”幻觉“、训练数据过时、 知识范围有限等带来的负面问题。

2025-04-22 11:37:26 905

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除