零基础转行大模型经验分享
个人情况:
本人211届硕士毕业,电子信息专业,毕业于国内某211理工大学主修计算机科学与技术。毕业后,一直从事软件开发的工作,也有些大厂的工作经历。之前也只是稍微接触过机器学习,但是接触不多。
从软件开发转行的原因:
大家都知道这几年软件开发一直在走下坡路,这些年关于互联网程序员的负面消息越来越多,先是零散的消息,后面有时候会有大规模的裁员降薪消息,现在这种裁员降薪逐渐成为了一种常态。新来的从业者的学历能力要求越来越高,19年左右大专生还能入局,去阿里腾讯还能通过先干外包转正,后面这条路就被卡死了。到了现在哪怕是985211的科班也不一定能找到大厂好的岗位。另外,企业越来越不愿意去培养新人,我了解到的几年前入局的前辈,他们公司普遍给他们的宽容心更大,给他们的培训时间会更长。但是据我现在了解到的情况来看,因为企业并没有那么缺人,所以大量的公司想直接要熟练工而不乐意培养新员工。所以越来越来难了,自己也在不停的思考未来的路要怎么走,才能不被淘汰掉。
为什么选择AI大模型:
目前大模型人工智能浪潮毫无疑问,引发全社会关注的,至于人工智能有多重要,各界有多重视我就不强调了,相信稍微关注新闻的人都有注意到。不仅各个国家政府高度重视,而且最近金融圈也动作频频,相关企业市值股价连连高升,大模型研究人员的待遇也开得非常高。种种迹象表明,这是一轮新的浪潮,这是一场新的变革。
自己也是在一次偶然跟从事AI大模型领域校友的聊天中,深入了解了AI大模型这个领域,随着chatgpt的发布,这也是今天年比较热议的一个话题,也可能是我的一次新机遇。
我为了转行大模型学习相关知识断断续续也有三个月了。第一个月我主要学习了深度学习有关基础知识,pytorch框架的使用。第二月做了文本分类等一些实战项目。第三个月为了能够找到相关的工作,又做了两个项目:一个RAG汽车知识库问答,一个中药说明书实体识别。可以说,我做完这三个项目,投简历后才有的面试机会。
也不负所望经过自己一年的努力,凭借扎实的技术功底、实战项目经验和积极的学习态度,也成功获得了某知名AI企业的青睐,成为一名大模型应用工程师。
这是之前学习手机总结的学习计划以及学习资料,内容非常详细,覆盖了从人工智能和大模型的基础知识到进阶应用的全过程。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
学习路线
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
本文转自 https://blog.csdn.net/2401_85328934/article/details/141856805?spm=1001.2014.3001.5501,如有侵权,请联系删除。