关键词: [Amazon Web Services生成式AI Campaign]
导言
在这个演讲中,演讲者讨论了如何将生成式人工智能应用于投资分析;具体解释了通过结合基础模型和专家系统,可以实现自我改进的投资逻辑生成,以及通过自然语言交互让最终用户参与迭代优化。演讲重点阐述了 Anthropic 如何使 Bridgewater 能够实现投资分析自动化、提高效率,以及通过迭代优化不断改进分析质量。这是 Bridgewater 与 亚马逊云科技 合作的演讲。
演讲内容
以下是小编为您整理的本次演讲的精华,共1300字,阅读时间大约是6分钟。如果您想进一步了解演讲内容或者观看演讲全文,请观看演讲完整视频或者下面的演讲原文。
近50年来,Bridgewater一直在根据对驱动市场和经济的深入理解系统化地投资全球市场。他们将这种理解编码到所谓的”专家系统”中,这个复杂的框架每天从现实世界获取数据,通过编码的逻辑进行处理,并相应地生成投资头寸。值得注意的是,这些头寸是建立在基本面分析之上,而非高频交易策略。
大约一年前,Bridgewater的联席首席投资官Greg Jensen做出了关键决策,组建了一个跨学科团队,包括投资者、数据科学家、机器学习工程师和技术人员。目标是重新思考Bridgewater的投资流程,创建一个AI/ML优先的系统,能够生成投资逻辑并具备不断自我改进的能力。这个开创性的计划被命名为”人工投资助理”(AIA),作为首席技术官,演讲者负责塑造技术愿景和战略。
十年来,Bridgewater一直与Amazon Web Services合作,为其专家系统提供支持。这个流程需要处理大量数据和庞大的计算量,全部都运行在Elastic Kubernetes Service (EKS)和其他亚马逊云科技服务上。AIA提议的架构在引入基础模型推理和生成假设的能力时,保留了表格化概念和数据的深层联系,这一直是Bridgewater方法的标志。这种对基本理解和系统方法的融合,有望创建出一个强大的系统,能够自我循环和自我学习,开创投资分析的新时代。
Bridgewater对Anthropic等公司开发的基础模型的探索显示,它们有潜力为几乎所有研究步骤做出贡献。演讲者对Anthropic的旗舰模型Claude表示赞赏,它在提供正确数据的情况下能出色地执行聚焦任务。然而,当这些模型被要求进行更复杂的分析时(这对于在全球金融市场中竞争至关重要),就会出现挑战。
Anthropic允许Bridgewater在合适的时间引入合适的模型,这是Bridgewater选择与之合作的关键因素。演讲者将Anthropic描述为一个抽象层,使各种模型(包括Claude、LaMa系列、CoHere以及最新迭代的Claude,其性能比前代更加出色)能够无缝集成。
深入探讨与Anthropic的解决方案,Bridgewater最初采用Claude进行一般推理任务。随后,他们创建了一个界面,让投资者(被认为是最佳提示工程师)可以轻松地与各种模型进行迭代和交互。这种方法源于认识到,主题专家往往比技术团队更有能力从这些模型中获取最大价值。Bridgewater发现,有时快速模型更合适,而其他时候较慢、成本更高且更加深思熟虑的模型则是正确选择。尽管他们尝试了微调模型,但Bridgewater最终发现在大多数使用场景下,直接使用最佳基础模型更为满意。
生成式AI的益处已渗透到Bridgewater业务的各个方面,尤其是投资领域。与Amazon Web Services生成式AI创新中心合作开发的AIA产品,在处理以前需要人工干预的复杂问题时显得非常宝贵。通过先行处理这些复杂的查询,AIA简化了流程,让人工分析师能够集中精力审查和完善输出结果。Bridgewater发现在整个业务中都有各种各样的用例,AIA正在创造价值,解决20%的棘手问题,并改进了整体流程。
Bridgewater利用生成式AI的方法受到了检索增强生成(RAG)等技术的启发,它允许提供数据来解决简单的问题,而将更复杂的问题交给人工专家,在需要判断时进行处理。然而,演讲者承认,对于他们最复杂的一些查询,所需的信息可能不存在于他们的数据仓库中。在这种情况下,像Claude和GPT-3,或者更高质量的模型,都可以生成相当准确的答案,为分析师提供宝贵的初稿基础。
作为该领域的资深从业者,演讲者为着手生成式AI之旅的CTO和CIO提供了宝贵建议。首先,他们强调明确界定价值主张并理解现成模型为何无法充分解决用户问题的重要性。其次,他们提倡创建一个能够预见和适应快速变化步伐的基础设施和平台,从而随时集成新的模型、API或功能。最后也是最重要的一点,演讲者建议,一个组织最佳的提示工程师往往是最终用户自己——主题专家。通过让用户直接与模型交互和迭代,组织可以加速用例演进并从这些强大工具中解锁更多价值。
为展示AIA的能力,Bridgewater演示了一个聊天界面,可执行由14个步骤组成的”蓝图”——涉及语言模型调用、API调用和愿景概念。演示重点回答了”如何对经济和市场形成观点?“这个问题。AIA执行了这个14步蓝图,展现了显示推理引擎、图表和其他视觉辅助(通常出现在Bridgewater报告中)的能力。
演讲者强调,Bridgewater正在积极扩展AIA,并探索带有函数调用和语言图的智能体工作流程。这些进步旨在提高复杂推理任务的可靠性和可管理性,进一步巩固AIA作为Bridgewater投资武库中强大工具的地位。
Bridgewater创新方法的一个显著例子是将Amazon Textract集成进来,这项服务擅长从复杂PDF中提取文本并转换为更易于访问的markdown格式。演讲者强调处理PDF格式的财务报告(如2023年EPAM的季度报告)时的挑战,从表格中提取文本可能是一项艰巨的任务。Textract在准确提取和格式化文本(包括处理跳列等细节)方面的出色表现,大大提高了Bridgewater RAG管道的相关性和准确性。如今,Textract已经成为Bridgewater的首选PDF解析器,使RAG管道产生更好、更相关、更准确的结果。
在整个讨论过程中,演讲者不断重申生成式AI在帮助Bridgewater实现业务目标方面的变革潜力。与Amazon Web Services的合作以及Anthropic模型的集成,为基本理解和系统方法被生成式AI的力量增强,从而创建出自我改进的系统奠定了基础,这种系统能够进行推理、生成假设并以前所未有的复杂程度驱动投资决策。
随着Bridgewater和Amazon Web Services继续在过去一年奠定的基础上不断建设,在投资管理行业进一步创新和扰乱的可能性似乎是无穷无尽的。他们所进行的这段旅程,见证了生成式AI的变革力量,以及在瞬息万变的全球市场中,拥抱前沿技术以获得竞争优势的重要性。
下面是一些演讲现场的精彩瞬间:
安索帕克公司的灵活性和不断推出新模型的能力,使其成为AIA获取最佳生成式AI模型的理想选择。
亚马逊网络服务公司在生成式人工智能领域采用了多种模型,包括快速模型和更加深思熟虑的模型,并通过实验找到了最佳的基础模型来满足大多数使用场景。
亚马逊云科技正在开发一种新的人工智能分析助手,能够处理复杂的问题,减轻人工的工作负担,提高工作效率。
总结
领先的投资公司 Bridgewater 已经开始了一段雄心勃勃的旅程,将人工智能(AI)和机器学习(ML)整合到其投资过程中。他们的“人工投资助理”(AIA)计划旨在创建一个以 AI/ML 为先导的系统,能够生成投资逻辑并随时间自我改进。
Bridgewater 与亚马逊云科技和 Anthropic 合作,开发了一个灵活的架构,利用了各种基础模型的优势,包括 Claude、LaMa 和 CoHere。这种方法使他们能够为每个任务选择最合适的模型,确保最佳性能。Anthropic 的抽象层使这些模型能够无缝集成到 AIA 中。
一个关键的洞察是,最佳的提示工程师往往是最终用户本身,即主题专家。通过赋予用户直接与模型互动并对其进行迭代的能力,Bridgewater 加速了用例的演变,并改善了整体用户体验。这种协作方法在完善系统能力方面证明是非常宝贵的。
Bridgewater 的愿景是创建一个能够自学习和自我改进的强大系统,将基本理解与系统推理结合起来。AIA 演示展示了一个多阶段的推理过程,展示了应对日益复杂任务的潜力。随着旅程的继续,Bridgewater 仍致力于推动以 AI 驱动的投资分析的边界,利用云计算和生成式 AI 技术的最新进展。