大模型推理工具:vLLM的入门使用

简介

vLLM是一个快速且易于使用的LLM推理和服务库。

vLLM速度很快:

  • 最先进的服务吞吐量
  • 使用PagedNote有效管理注意力键和值内存
  • 传入请求的连续批处理
  • 使用CUDA/HIP图快速执行模型
  • 量化:GPTQ、AWQ、SqueezeLLM、FP8 KV缓存
  • 优化的CUDA内核

vLLM灵活且易于使用:

  • 与流行的拥抱脸模型无缝集成
  • 高吞吐量服务于各种解码算法,包括并行采样、波束搜索等
  • 分布式推理的张量并行性支持
  • 流式输出
  • 与OpenAI兼容的API服务器
  • 支持NVIDIA GPU和AMD GPU
  • (实验性)前缀缓存支持
  • (实验性)Multi-lora支持

vLLM无缝支持多种拥抱脸模型,包括以下架构:

  • Aquila & Aquila2 (BAAI/AquilaChat2-7B, BAAI/AquilaChat2-34B, BAAI/Aquila-7B, BAAI/AquilaChat-7B, etc.)
  • Baichuan & Baichuan2 (baichuan-inc/Baichuan2-13B-Chat, baichuan-inc/Baichuan-7B, etc.)
  • BLOOM (bigscience/bloom, bigscience/bloomz, etc.)
  • ChatGLM (THUDM/chatglm2-6b, THUDM/chatglm3-6b, etc.)
  • Command-R (CohereForAI/c4ai-command-r-v01, etc.)
  • DBRX (databricks/dbrx-base, databricks/dbrx-instruct etc.)
  • DeciLM (Deci/DeciLM-7B, Deci/DeciLM-7B-instruct, etc.)
  • Falcon (tiiuae/falcon-7b, tiiuae/falcon-40b, tiiuae/falcon-rw-7b, etc.)
  • Gemma (google/gemma-2b, google/gemma-7b, etc.)
  • GPT-2 (gpt2, gpt2-xl, etc.)
  • GPT BigCode (bigcode/starcoder, bigcode/gpt_bigcode-santacoder, etc.)
  • GPT-J (EleutherAI/gpt-j-6b, nomic-ai/gpt4all-j, etc.)
  • GPT-NeoX (EleutherAI/gpt-neox-20b, data
模型推理中出现"RuntimeError: CUDA out of memory"错误是因为在GPU上使用的显存不足。这个错误通常发生在模型的输入数据量过大或模型占用的显存资源过多时。 解决这个问题可以采用以下方法: 1. 减少批处理大小:可以通过减少每次推理时的图像批处理大小来减少内存消耗。较小的批处理大小会减少每个批处理所需的显存量。 2. 减少模型的参数量:如果模型的参数量过大,可以尝试减少参数量来缓解显存不足的问题。可以通过减少模型的深度、宽度或者使用降低维度的技术(如降低卷积核的尺寸)来减少参数量。 3. 使用更高效的模型:可以考虑使用比原始模型更加轻量级和高效的模型结构。例如,可以使用MobileNet、EfficientNet等模型来代替较重的ResNet、VGG等模型。 4. 降低精度:可以尝试将模型的参数精度从32位浮点数降低为16位浮点数,以减少显存的使用量。这通常不会对模型的性能产生显著的影响,但会大幅度减少显存的使用。 5. 使用更大的显存:如果以上方法无法解决问题,可以考虑更换具有更大显存容量的GPU设备来运行模型推理。 总之,修复"RuntimeError: CUDA out of memory"错误的主要思路是通过减少模型参数量、降低精度、优化模型结构或减少输入数据量来减少GPU显存的使用。根据具体问题情况选择适当的解决方法,以确保模型能够在GPU上正常运行。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值