还有兄弟不知道网络安全面试可以提前刷题吗?费时一周整理的160+网络安全面试题,金九银十,做网络安全面试里的显眼包!
王岚嵚工程师面试题(附答案),只能帮兄弟们到这儿了!如果你能答对70%,找一个安全工作,问题不大。
对于有1-3年工作经验,想要跳槽的朋友来说,也是很好的温习资料!
【完整版领取方式在文末!!】
93道网络安全面试题
内容实在太多,不一一截图了
黑客学习资源推荐
最后给大家分享一份全套的网络安全学习资料,给那些想学习 网络安全的小伙伴们一点帮助!
对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。
😝朋友们如果有需要的话,可以联系领取~
1️⃣零基础入门
① 学习路线
对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。
② 路线对应学习视频
同时每个成长路线对应的板块都有配套的视频提供:
2️⃣视频配套工具&国内外网安书籍、文档
① 工具
② 视频
③ 书籍
资源较为敏感,未展示全面,需要的最下面获取
② 简历模板
因篇幅有限,资料较为敏感仅展示部分资料,添加上方即可获取👆
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
- Range:
- integer_range:32位有字符整数,-231 ~ 231-1
- long_range:64位有符号整数
- double_range:64位IEEE754类型浮点数
- date_range:日期,可以使用format自定义格式
- ip_range:ipv4和ipv6均支持
- Text:
- text:全文,一般是会进行分析和分析,邮件正文,商品描述等
- match_only_text:空间优化,禁用评分,适合日志消息。
文档(document)
- _index:文档存放在的索引
- _type:文档表示的对象类别,之前与关系型数据库的table对应,现在不再强调这个
- _id:文档唯一标识
- _version:版本,更新文档时,该字段会改变
- _source:数据
领域特定语言 (DSL)
使用 JSON 构造了一个请求。包含了filter range过滤器。
分词器
在全文检索情况下,对text等类型分词,方便建立倒排索引。常见的分词器有
- ik分词器
- icu分词器
- smartcn分词器
- pinyin分词器
更多分词器见参考,es官方github上有一些。腾讯云可支持大部分插件,点击ES集群->插件列表。如下图所示。
得分排序
按照相关性得分排序,一般使用TF-IDF算法(见参考,本文主要还是在ES实践方面,算法不赘述),通过_score返回得分
后台执行的操作
- 分配文档到不同的容器 或 分片 中,文档可以储存在一个或多个节点中
- 按集群节点来均衡分配这些分片,从而对索引和搜索过程进行负载均衡
- 复制每个分片以支持数据冗余,从而防止硬件故障导致的数据丢失
- 将集群中任一节点的请求路由到存有相关数据的节点
- 集群扩容时无缝整合新节点,重新分配分片以便从离群节点恢复
深入搜索(实践)
ES,you know, for search, 搜索才是重点!!!
数据添加
索引heros,字段及类型如下:
- name:keyword
- age:byte
- role:keyword
- birthday:date
- mail:text
- hobby:text
- sentence:text
数据如下:
name | age | role | birthday | hobby | sentence | |
---|---|---|---|---|---|---|
大乔 | 18 | 辅助 | 2003-11-10 | daqiao@163.com | 写诗 画画 | 诗是自由的载体 |
小乔 | 19 | 法师 | 2002-01-20 | xiaoqiao@sina.com | 画画 唱歌 | Whenever you need me, I’ll be here. |
孙策 | 25 | 坦克 | 1996-11-10 | sunce@163.com | 画画 唱歌 | 我向往诗和远方,也不会忘记她和故乡 |
周瑜 | 23 | 法师 | 1998-01-20 | zhouyu@sina.com | 写诗 画画 | Whenever you are in trouble,I’m always near. |
刘备 | 30 | 打野 | 1991-10-20 | liubei@qq.com | 兵法 武器 | Shi wo bu tai dong |
孙尚香 | 26 | 射手 | 1995-10-20 | 兵法 化妆 | 詩我不太懂 |
创建索引及文档
PUT /heros
这里使用的Kibana的DevTools,如果你看了ES系列第一篇文章,有白嫖腾讯云的ES集群,可以点击可视化配置,给Kibana配置公网白名单即可,由于我前面的文章还没有介绍Kibana的使用,你可以继续使用Postman、curl或elasticsearch-head插件来发起请求。
查看setting和mapping情况
GET /heros?pretty
添加一个文档
POST /heros/_doc/1001
{
"name":"大乔",
"age":18,
"role":"辅助",
"birthday":"2003-11-10",
"mail":"daqiao@163.com",
"hobby":"写诗 画画",
"sentence":"诗是自由的载体"
}
结果如下
再次查询mapping
可以看到ES自动添加了类型,但是与我们要求的不符合。有些不会自动分词,无法进行后序的搜索。
删除索引,再次添加
PUT /heros
{
"settings": {
"number\_of\_shards": 1,
"number\_of\_replicas": 1
},
"mappings": {
"properties": {
"name":{
"type": "keyword"
},
"age":{
"type": "byte"
},
"role":{
"type": "keyword"
},
"mail":{
"type":"text"
},
"birthday":{
"type":"date"
},
"hobby":{
"type": "text"
},
"sentence":{
"type":"text"
}
}
}
}
之后添加文档,其他英雄的放在附录了,最终的索引应该如下图所示:
结构化搜索
结构化搜索(Structured search) 是指有关探询那些具有内在结构数据的过程。比如日期、时间和数字都是结构化的:它们有精确的格式,我们可以对这些格式进行逻辑操作。
在结构化查询中,要么存于集合之中,要么存在集合之外。结构化查询不关心文件的相关度或评分;它简单的对文档包括或排除处理。
单一过滤器(term)
我们首先来看最为常用的 term 查询, 可以用它处理数字(numbers)、布尔值(Booleans)、日期(date)等。
注意:ES5.0后,已经没有string类型了
警告:尽量不要用于text类型字段
查询角色是“法师”的英雄
GET /heros/_search
{
"query":{
"term":{
"role":"法师"
}
}
}
结果如下图所示
多个精确值terms
查询角色是“法师”或“射手”的英雄
GET /heros/_search
{
"query":{
"terms":{
"role":["法师","射手"]
}
}
}
结果如图所示
可以看到,多了射手角色的英雄。
范围过滤器(range)
{
"range":{
"field\_name":{
},
}
}
对字段进行范围过滤,常用的如下
- gt: > 大于(greater than)
- lt: < 小于(less than)
- gte: >= 大于或等于(greater than or equal to)
- lte: <= 小于或等于(less than or equal to)
查询19<=age<25的英雄
GET /heros/_search
{
"query": {
"range":{
"age":{
"gte":19,
"lt":25
}
}
}
}
结果如下图所示
组合过滤器(bool过滤器)
将多个过滤器进行组组合
{
"bool" : {
"must" : [],
"must\_not" : [],
"should" : [],
"filter":[],
}
}
- must:所有语句必须匹配,相当于and
- must_not:所有语句不能匹配,相当于not
- should:至少有一个语句匹配,相当于or
查询角色是法师或辅助,年龄必须小于20,邮箱不能是新浪邮箱的英雄
GET /heros/_search
{
"query": {
"bool": {
"must": {
"range":{
"age":{
"lt":20
}
}
},
"must\_not":
{
"match":{"mail":"@sina.com"}
},
"should": [
{
"term": {"role": "法师"}
},
{
"term":{"role":"辅助"}
}
]
}
}
}
看前面的数据可以发现,就剩大乔了,结果如下图所示
NULL值处理(exists)
查询有邮箱的英雄
GET /heros/_search
{
"query": {
"exists": {
"field": "mail"
}
}
}
结果如下图所示
那么,如何查询不存在邮箱的英雄呢?之前有missing,现在不支持了,可以使用must_not进行嵌套
GET /heros/_search
{
"query": {
"bool": {
"must\_not": {
"exists":{
"field": "mail"
}
}
}
}
}
结果如下图所示
全文搜索
基于词项与基于全文
如 term 或 fuzzy 这样的底层查询不需要分析阶段,它们对单个词项进行操作。
像 match 或 query_string 这样的查询是高层查询,它们了解字段映射的信息
匹配搜索(match)与操作符(operator)
查询sentence中含诗的英雄
GET /heros/_search
{
"query": {
"match": {
"sentence": "诗"
}
}
}
结果如下图所示
可以看到,评分语句更短的评分更高
多词搜索情况下
查询sentence中含“我 诗”的英雄
GET /heros/_search
{
"query": {
"match": {
"sentence": "我 诗"
}
}
}
结果如下图所示
可以看到有些只包含我或诗的内容也出来了,虽然排名落后,如何做到且呢,前面使用了must,这里使用operator实现
GET /heros/_search
{
"query": {
"match": {
"sentence": {
"query": "我 诗",
"operator": "and"
}
}
}
}
结果如下图所示
权重提升(boost)
查询sentence中必须包含"Whenever",有"in"或者"be"的英雄
GET /heros/_search
{
"query": {
"bool": {
"must": [
{"match": {
"sentence": "Whenever"
}}
],
"should": [
{ "match": { "sentence": "in" }
},
{ "match": { "sentence": "be" }}
]
}
}
}
结果如下图所示
现要求含in的权重更高,也就是提高_score来提高搜索排名
boost默认为1,通过增加in的boost来提高in的排名
GET /heros/_search
{
"query": {
"bool": {
"must": [
{"match": {
"sentence": "Whenever"
}}
],
"should": [
{ "match": {
"sentence": {
"query": "in",
"boost": 2
}
}
},
{ "match": { "sentence": "be" }}
]
}
}
}
结果如下图所示
多字段搜索
前面已经进行了简单的多字符串搜索,不过,还有一些多字段时复杂的搜索情况。
最佳字段查询(dis_max与tie_breaker)
查询爱好有诗,sentence(随便起的名字,可以理解为个性签名或一句话介绍)中有诗或她的英雄
GET /heros/_search
{
"query": {
"bool": {
"should": [
{ "match": { "hobby": "诗" }},
{ "match": { "sentence": "诗 她" }}
]
}
}
}
结果如下图所示
可以看到,第二个结果是我们更想得到的。bool会打两次分,再除以语句总数2,第一个结果hobby和sentence都有诗,导致第一个结果就靠前了,由于hobby和sentence的竞争关系,所以需要找到最佳匹配字段。
使用dis_max来得到想要的结果
GET /heros/_search
{
"query": {
"dis\_max": {
"queries": [
{ "match": { "hobby": "诗" }},
{ "match": { "sentence": "诗 她" }}
]
}
}
}
结果如下图所示
tips:想要在bool和dis_max之间,可以使用tie_breaker参数,请读者自行深入了解。
多字段进行相同搜索(multi_match)
查询hobby或sentence中含诗的英雄,也就是对hobby sentence做同一搜索,如果写多个match会比较繁琐,可以采用multi_match,字段使用列表的方式填写多个即可。
GET /heros/_search
{
"query": {
### 一、网安学习成长路线图
网安所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
![在这里插入图片描述](https://img-blog.csdnimg.cn/aa7be04dc8684d7ea43acc0151aebbf1.png)
### 二、网安视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
![在这里插入图片描述](https://img-blog.csdnimg.cn/f0aeee2eec7a48f4ad7d083932cb095d.png)
### 三、精品网安学习书籍
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
![在这里插入图片描述](https://img-blog.csdnimg.cn/078ea1d4cda342f496f9276a4cda5fcf.png)
### 四、网络安全源码合集+工具包
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
![在这里插入图片描述](https://img-blog.csdnimg.cn/e54c0bac8f3049928b488dc1e5080fc5.png)
### 五、网络安全面试题
最后就是大家最关心的网络安全面试题板块
![在这里插入图片描述](https://img-blog.csdnimg.cn/15c1192cad414044b4dd41f3df44433d.png)![在这里插入图片描述](https://img-blog.csdnimg.cn/b07abbfab1fd4edc800d7db3eabb956e.png)
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化资料的朋友,可以点击这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**