codeshell安装配置,2024年最新耗时两个礼拜8000字Golang面试长文

  1. Anaconda3-2022.10-Windows-x86_64.exe【用于安装管理Pytorch,这里选择的是2022年最后一个版本】
  2. Pytorch【根据实际情况而定】
  3. transformers【默认最新版】

2.2 软件下载

  1. python-3.10.9-amd64.exe

在这里插入图片描述
2. Anaconda3-2022.10-Windows-x86_64.exe

  1. Pytorch【非安装包的形式,不用下载】
  2. transformers【非安装包的形式,不用下载】

2.3 codeshell使用环境安装

2.3.1 python-3.10.9-amd64.exe安装
  1. 选择自定义安装,并勾选使用管理员权限安装和将python.exe加入到环境。
    在这里插入图片描述
  2. 设置自定义安装位置
    在这里插入图片描述
  3. 验证安装结果
  • cmd命令弹窗,输入python ,点击回车,看到下图,则安装python成功。
    在这里插入图片描述
2.3.2 Anaconda3-2022.10-Windows-x86_64.exe安装
  1. 选择Just Me
    在这里插入图片描述
  2. 自定义安装路径
    在这里插入图片描述
  3. 只勾选Register,然后点击Install
    在这里插入图片描述
  4. 去除这两个勾选,然后点击Finish
    在这里插入图片描述
2.3.3 创建环境

1.查看Python版本
cmd打开命令行,输入python --version,查验python版本。
在这里插入图片描述
2. 打开Anaconda Prompt页面,输入指令conda create -n py310 python=3.10(这里每个人不一样,要根据查出来的版本做修改。)
在这里插入图片描述
3. 看见如下图的示例,表示环境创建完毕。
在这里插入图片描述
4. 最后conda activate py310激活环境,看到左下角改变为py310,代表进入该环境。
在这里插入图片描述
5. 其他命令

  • 退出激活的环境,conda deactivate
  • 查看虚拟环境列表,conda env list
  • conda删除环境,conda remove -n需要删除的环境名 --all。

到这里,就代表anaconda的安装配置全部完成。

2.3.4 Pytorch安装
  1. conda配置
  • 更换镜像源地址,以下是清华大学镜像源地址:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes

  • 把连接超时的时间设置成40s,读取超时的时间修改成100s

conda config --set remote_connect_timeout_secs 40
conda config --set remote_read_timeout_secs 100

  • 配置文件位置:C:\Users\liuch\.condarc

channels:

  • https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
  • https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
  • https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
  • https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  • defaults
    show_channel_urls: true
    remote_connect_timeout_secs: 40.0
    remote_read_timeout_secs: 100.0

注意:需要把 - defaults删掉。

  1. 查看本机的CUDA版本
    cmd命令行输入nvidia-smi,在第一行最右边可以看到CUDA的版本号。
    在这里插入图片描述
  2. 点击进入Pytorch官网,然后下拉至如图所示位置,只需保证系统和电脑匹配,CUDA版本小于本机CUDA版本,调整结束后,复制红框中的指令。

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

在这里插入图片描述
4. 打开Anaconda Prompt,激活py310环境(conda activate py310),然后粘贴上一步的指令,回车执行。
在这里插入图片描述
5. 如果报OpenSSL错误

(py310) C:\Users\liuch>conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
Collecting package metadata (current_repodata.json): failed

CondaSSLError: OpenSSL appears to be unavailable on this machine. OpenSSL is required to
download and install packages.

Exception: HTTPSConnectionPool(host=‘conda.anaconda.org’, port=443): Max retries exceeded with url: /pytorch/win-64/current_repodata.json (Caused by SSLError(“Can’t connect to HTTPS URL because the SSL module is not available.”))

可去 https://slproweb.com/products/Win32OpenSSL.html 下载安装包,注意最好下载Win64 OpenSSL v1.1.1w LightEXE,也就是低版本的,因为v3.x的安装后依旧报错。
在这里插入图片描述
6. 输入y确认,回车。
7. 等待安装直到左上角出现done【下载依赖较多,耗时较长】。
在这里插入图片描述
8. 输入pip list,查看安装了哪些包。
9. 输入python进入环境,输入import torch,无报错代表导入成功(这里要等待一段时间)。
10. 输入torch.cuda.is_available()查看torch是否可以使用显卡,True代表可以。
在这里插入图片描述
至此,Pytorch安装完毕。

2.3.5 transformers

安装最新版本:

pip install transformers

指定版本(推荐):

pip install transformers==4.34.0

输入pip list,查看安装了哪些包。
在这里插入图片描述
至此,codeshell环境安装完毕。

3 下载codeshell模型

在第二部分主要是搭建了codeshell使用环境,但是本地还没有最底层的模型文件,所以需要单独下载模型文件,才能真正使用codeshell

目前有四个开源的模型如下:

  • CodeShell BaseCodelShell底座模型,具有强大的代码基础能力。
  • CodeShell ChatCodelShell对话模型,在代码问答、代码补全等下游任务重性能优异。
  • CodeShell Chat 4bitCodelShell对话模型4bit量化版本,在保证模型性能的前提下内存消耗更小,速度更快。
  • CodeShell CPPCodelShell对话模型CPP版本,支持开发者在没有GPU的个人电脑中使用。注意,CPP版本同样支持量化操作,用户可以在最小内存为8G的个人电脑中运行CodelShell

其中有三个模型是在huggingface上托管:

  • WisdomShell/CodeShell-7B:对应CodeShell Base
  • WisdomShell/CodeShell-7B-Chat:对应CodeShell Chat
  • WisdomShell/CodeShell-7B-Chat-int4:对应CodeShell Chat 4bit

所以需要从huggingface上下载下来。

git lfs install
git clone https://huggingface.co/WisdomShell/CodeShell-7B-Chat

4 codeshell使用

注意:这里是在py310环境使用的,所以需要先激活py310环境。

conda activate py310

4.1 Web UI

通过下列命令启动Web服务,服务启动后,可以通过https://127.0.0.1:8000进行访问。

python demos/web_demo.py

  1. 如果报错提示缺少相关依赖模块,使用pip install +模块名称下载安装即可,例如报下错误:

(py310) E:\Python\codeshell>python demos/web_demo.py
Traceback (most recent call last):
File “E:\Python\codeshell\demos\web_demo.py”, line 28, in
import gradio as gr
ModuleNotFoundError: No module named ‘gradio’

则需要安装相关依赖,然后重新启动:

pip install gradio

  1. 如果提示连接不上https://huggingface.co,需要开代理,或者将model下载到本地。

4.2 CLI Demo

python demos/cli_demo.py

5 总结

  1. 耗内存
    4.1 Web UI4.2 CLI Demo使用时,可以看到占用内存16943MB,即16.54GB。
    在这里插入图片描述

  2. 响应慢
    根据问题写代码时,很慢。

  3. 准确性 尚可

  4. golang语言实现,输入一个英文句子,反转句子中单词的顺序,但单词内的字符顺序不变,简单起见,标点符号和普通单词一样处理。

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Go语言工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Go语言全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Golang知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加V获取:vip1024b (备注Go)
img

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

学习提升的进阶课程,基本涵盖了95%以上Golang知识点,真正体系化!**

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加V获取:vip1024b (备注Go)
[外链图片转存中…(img-9WqNQk2t-1712958316071)]

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值