先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新软件测试全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip1024b (备注软件测试)
正文
8,debug配置参数
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
debug_lockdep = 0/0
debug_context = 0/0
debug_crush = 0/0
debug_buffer = 0/0
debug_timer = 0/0
debug_filer = 0/0
debug_objecter = 0/0
debug_rados = 0/0
debug_rbd = 0/0
debug_journaler = 0/0
debug_objectcatcher = 0/0
debug_client = 0/0
debug_osd = 0/0
debug_optracker = 0/0
debug_objclass = 0/0
debug_filestore = 0/0
debug_journal = 0/0
debug_ms = 0/0
debug_mon = 0/0
debug_monc = 0/0
debug_tp = 0/0
debug_auth = 0/0
debug_finisher = 0/0
debug_heartbeatmap = 0/0
debug_perfcounter = 0/0
debug_asok = 0/0
debug_throttle = 0/0
debug_paxos = 0/0
debug_rgw = 0/0
|
关闭了所有的debug信息,能一定程度加快ceph集群速度,但也会丢失一些关键log,出问题的时候不好分析;
参考:
http://www.10tiao.com/html/362/201609/2654062487/1.html
9,osd op配置参数
1
2
3
4
5
6
|
osd_enable_op_tracker = false 默认值 true
osd_num_op_tracker_shard = 32 默认值 32
osd_op_threads = 10 默认值 2
osd_disk_threads = 1 默认值 1
osd_op_num_shards = 32 默认值 5
osd_op_num_threads_per_shard = 2 默认值 2
|
osd_enable_op_tracker
:追踪osd op状态的配置参数,默认为true;不建议关闭,关闭后osd的 slow_request,ops_in_flight,historic_ops 无法正常统计;
1
2
3
4
|
ceph daemon /var/run/ceph/ceph-osd.0.asok dump_ops_in_flight
op_tracker tracking is not enabled now, so no ops are tracked currently, even those get stuck. Please enable “osd_enable_op_tracker”, and the tracker will start to track new ops received afterwards.
ceph daemon /var/run/ceph/ceph-osd.0.asok dump_historic_ops
op_tracker tracking is not enabled now, so no ops are tracked currently, even those get stuck. Please enable “osd_enable_op_tracker”, and the tracker will start to track new ops received afterwards.
|
打开op tracker后,若集群iops很高,osd_num_op_tracker_shard
可以适当调大,因为每个shard都有个独立的mutex锁;
1
2
3
4
5
6
7
8
9
10
11
12
|
class OpTracker {
…
struct ShardedTrackingData {
Mutex ops_in_flight_lock_sharded;
xlist<TrackedOp > ops_in_flight_sharded;
explicit ShardedTrackingData(string lock_name):
ops_in_flight_lock_sharded(lock_name.c_str()) {}
};
vector<ShardedTrackingData> sharded_in_flight_list;
uint32_t num_optracker_shards;
…
};
|
osd_op_threads
:对应的work queue有peering_wq
(osd peering请求),recovery_gen_wq
(PG recovery请求);
osd_disk_threads
:对应的work queue为 remove_wq
(PG remove请求);
osd_op_num_shards
和osd_op_num_threads_per_shard
:对应的thread pool为osd_op_tp
,work queue为op_shardedwq
;
处理的请求包括:
OpRequestRef
PGSnapTrim
PGScrub
调大osd_op_num_shards
可以增大osd ops的处理线程数,增大并发性,提升OSD性能;
10,osd client message配置参数
1
2
|
osd_client_message_size_cap = 1048576000 默认值 5001024L1024L // client data allowed in-memory (in bytes)
osd_client_message_cap = 10000 默认值 100 // num client messages allowed in-memory
|
这个是osd端收到client messages的capacity配置,配置大的话能提升osd的处理能力,但会占用较多的系统内存;
配置建议:
服务器内存足够大的时候,适当增大这两个值
11,osd scrub配置参数
1
2
3
4
5
6
7
8
9
10
11
|
osd_scrub_begin_hour = 2 默认值 0
osd_scrub_end_hour = 6 默认值 24
// The time in seconds that scrubbing sleeps between two consecutive scrubs
osd_scrub_sleep = 2 默认值 0 // sleep between [deep]scrub ops
osd_scrub_load_threshold = 5 默认值 0.5
// chunky scrub配置的最小/最大objects数,以下是默认值
osd_scrub_chunk_min = 5
osd_scrub_chunk_max = 25
|
Ceph osd scrub是保证ceph数据一致性的机制,scrub以PG为单位,但每次scrub回获取PG lock,所以它可能会影响PG正常的IO;
Ceph后来引入了chunky的scrub模式,每次scrub只会选取PG的一部分objects,完成后释放PG lock,并把下一次的PG scrub加入队列;这样能很好的减少PG scrub时候占用PG lock的时间,避免过多影响PG正常的IO;
同理,引入的osd_scrub_sleep
参数会让线程在每次scrub前释放PG lock,然后睡眠一段时间,也能很好的减少scrub对PG正常IO的影响;
配置建议:
osd_scrub_begin_hour
和osd_scrub_end_hour
:OSD Scrub的开始结束时间,根据具体业务指定;osd_scrub_sleep
:osd在每次执行scrub时的睡眠时间;有个bug跟这个配置有关,建议关闭;osd_scrub_load_threshold
:osd开启scrub的系统load阈值,根据系统的load average值配置该参数;osd_scrub_chunk_min
和osd_scrub_chunk_max
:根据PG中object的个数配置;针对RGW全是小文件的情况,这两个值需要调大;
参考:
http://www.jianshu.com/p/ea2296e1555c
http://tracker.ceph.com/issues/19497
12,osd thread timeout配置参数
1
2
3
4
5
|
osd_op_thread_timeout = 580 默认值 15
osd_op_thread_suicide_timeout = 600 默认值 150
osd_recovery_thread_timeout = 580 默认值 30
osd_recovery_thread_suicide_timeout = 600 默认值 300
|
osd_op_thread_timeout
和osd_op_thread_suicide_timeout
关联的work queue为:
op_shardedwq
- 关联的请求为:OpRequestRef
,PGSnapTrim
,PGScrub
peering_wq
- 关联的请求为:osd peering
osd_recovery_thread_timeout
和osd_recovery_thread_suicide_timeout
关联的work queue为:
recovery_wq
- 关联的请求为:PG recovery
Ceph的work queue都有个基类WorkQueue_
,定义如下:
1
2
3
4
5
6
7
8
9
10
11
|
/// Pool of threads that share work submitted to multiple work queues.
class ThreadPool : public md_config_obs_t {
…
/// Basic interface to a work queue used by the worker threads.
struct WorkQueue_ {
string name;
time_t timeout_interval, suicide_interval;
WorkQueue_(string n, time_t ti, time_t sti)
: name(n), timeout_interval(ti), suicide_interval(sti)
{ }
…
|
这里的timeout_interval
和suicide_interval
分别对应上面所述的配置timeout
和suicide_timeout
;
当thread处理work queue中的一个请求时,会受到这两个timeout时间的限制:
timeout_interval
- 到时间后设置m_unhealthy_workers+1
suicide_interval
- 到时间后调用assert,OSD进程crush
对应的处理函数为:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
bool HeartbeatMap::_check(const heartbeat_handle_d *h, const char *who, time_t now)
{
bool healthy = true;
time_t was;
was = h->timeout.read();
if (was && was < now) {
ldout(m_cct, 1) << who << " ‘" << h->name << "’"
<< " had timed out after " << h->grace << dendl;
healthy = false;
}
was = h->suicide_timeout.read();
if (was && was < now) {
ldout(m_cct, 1) << who << " ‘" << h->name << "’"
<< " had suicide timed out after " << h->suicide_grace << dendl;
assert(0 == “hit suicide timeout”);
}
return healthy;
}
|
当前仅有RGW添加了worker的perfcounter,所以也只有RGW可以通过perf dump查看total/unhealthy的worker信息:
1
2
3
|
[root@ yangguanjun]# ceph daemon /var/run/ceph/ceph-client.rgw.rgwdaemon.asok perf dump | grep worker
“total_workers”: 32,
“unhealthy_workers”: 0
|
对应的配置项为:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
OPTION(rgw_num_async_rados_threads, OPT_INT, 32) // num of threads to use for async rados operations
配置建议:
*_thread_timeout
:这个值配置越小越能及时发现处理慢的请求,所以不建议配置很大;特别是针对速度快的设备,建议调小该值;*_thread_suicide_timeout
:这个值配置小了会导致超时后的OSD crush,所以建议调大;特别是在对应的throttle调大后,更应该调大该值;
13,fielstore op thread配置参数
filestore_op_threads = 10 默认值 2
filestore_op_thread_timeout = 580 默认值 60
filestore_op_thread_suicide_timeout = 600 默认值 180
|
filestore_op_threads
:对应的thread pool为op_tp
,对应的work queue为op_wq
;filestore的所有请求都经过op_wq处理;
增大该参数能提升filestore的处理能力,提升filestore的性能;配合filestore的throttle一起调整;
filestore_op_thread_timeout
和filestore_op_thread_suicide_timeout
关联的work queue为:op_wq
配置的含义与上一节中的thread_timeout/thread_suicide_timeout
保持一致;
13,filestore merge/split配置参数
1
2
|
filestore_merge_threshold = -1 默认值 10
filestore_split_multiple = 16000 默认值 2
|
这两个参数是管理filestore的目录分裂/合并的,filestore的每个目录允许的最大文件数为:
filestore_split_multiple * abs(filestore_merge_threshold) * 16
在RGW的小文件应用场景,会很容易达到默认配置的文件数(320),若在写的过程中触发了filestore的分裂,则会非常影响filestore的性能;
每次filestore的目录分裂,会依据如下规则分裂为多层目录,最底层16个子目录:
例如PG 31.4C0, hash结尾是4C0,若该目录分裂,会分裂为 DIR_0/DIR_C/DIR_4/{DIR_0, DIR_F}
;
原始目录下的object会根据规则放到不同的子目录里,object的名称格式为: *__head_xxxxX4C0_*
,分裂时候X是几,就放进子目录DIR_X里。比如object:*__head_xxxxA4C0_*
, 就放进子目录 DIR_0/DIR_C/DIR_4/DIR_A
里;
解决办法:
- 增大merge/split配置参数的值,使单个目录容纳更多的文件;
filestore_merge_threshold
配置为负数;这样会提前触发目录的预分裂,避免目录在某一时间段的集中分裂,详细机制没有调研;- 创建pool时指定
expected-num-objects
;这样会依据目录分裂规则,在创建pool的时候就创建分裂的子目录,避免了目录分裂对filestore性能的影响;
参考:
http://docs.ceph.com/docs/master/rados/configuration/filestore-config-ref/
http://docs.ceph.com/docs/jewel/rados/operations/pools/#create-a-pool
http://blog.csdn.net/for_tech/article/details/51251936
http://ivanjobs.github.io/page3/
14,filestore fd cache配置参数
1
2
|
filestore_fd_cache_shards = 32 默认值 16 // FD number of shards
filestore_fd_cache_size = 32768 默认值 128 // FD lru size
|
filestore的fd cache是加速访问filestore里的file的,在非一次性写入的应用场景,增大配置可以很明显的提升filestore的性能;
15,filestore sync配置参数
1
2
3
4
|
filestore_wbthrottle_enable = false 默认值 true SSD的时候建议关闭
filestore_min_sync_interval = 5 默认值 0.01 s 最小同步间隔秒数,sync fs的数据到disk,FileStore::sync_entry()
filestore_max_sync_interval = 10 默认值 5 s 最大同步间隔秒数,sync fs的数据到disk,FileStore::sync_entry()
filestore_commit_timeout = 3000 默认值 600 s FileStore::sync_entry() 里 new SyncEntryTimeout(m_filestore_commit_timeout)
|
filestore_wbthrottle_enable
的配置是关于filestore writeback throttle的,即我们说的filestore处理workqueue op_wq
的数据量阈值;默认值是true,开启后XFS相关的配置参数有:
1
2
3
4
5
6
|
OPTION(filestore_wbthrottle_xfs_bytes_start_flusher, OPT_U64, 41943040)
OPTION(filestore_wbthrottle_xfs_bytes_hard_limit, OPT_U64, 419430400)
OPTION(filestore_wbthrottle_xfs_ios_start_flusher, OPT_U64, 500)
OPTION(filestore_wbthrottle_xfs_ios_hard_limit, OPT_U64, 5000)
OPTION(filestore_wbthrottle_xfs_inodes_start_flusher, OPT_U64, 500)
OPTION(filestore_wbthrottle_xfs_inodes_hard_limit, OPT_U64, 5000)
|
若使用普通HDD,可以保持其为true;针对SSD,建议将其关闭,不开启writeback throttle;
filestore_min_sync_interval
和filestore_max_sync_interval
是配置filestore flush outstanding IO到disk的时间间隔的;增大配置可以让系统做尽可能多的IO merge,减少filestore写磁盘的压力,但也会增大page cache占用内存的开销,增大数据丢失的可能性;
filestore_commit_timeout
是配置filestore sync entry到disk的超时时间,在filestore压力很大时,调大这个值能尽量避免IO超时导致OSD crush;
16,filestore throttle配置参数
1
2
3
4
5
6
7
8
9
10
11
|
filestore_expected_throughput_bytes = 536870912 默认值 200MB /// Expected filestore throughput in B/s
filestore_expected_throughput_ops = 2500 默认值 200 /// Expected filestore throughput in ops/s
filestore_queue_max_bytes= 1048576000 默认值 100MB
filestore_queue_max_ops = 5000 默认值 50
/// Use above to inject delays intended to keep the op queue between low and high
filestore_queue_low_threshhold = 0.6 默认值 0.3
filestore_queue_high_threshhold = 0.9 默认值 0.9
filestore_queue_high_delay_multiple = 2 默认值 0 /// Filestore high delay multiple. Defaults to 0 (disabled)
filestore_queue_max_delay_multiple = 10 默认值 0 /// Filestore max delay multiple. Defaults to 0 (disabled)
|
在jewel版本里,引入了dynamic throttle,来平滑普通throttle带来的长尾效应问题;
一般在使用普通磁盘时,之前的throttle机制即可很好的工作,所以这里默认filestore_queue_high_delay_multiple
和filestore_queue_max_delay_multiple
都为0;
针对高速磁盘,需要在部署之前,通过小工具ceph_smalliobenchfs
来测试下,获取合适的配置参数;
1
2
3
4
5
6
7
8
9
10
11
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注软件测试)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
y multiple. Defaults to 0 (disabled)
filestore_queue_max_delay_multiple = 10 默认值 0 /// Filestore max delay multiple. Defaults to 0 (disabled)
|
在jewel版本里,引入了dynamic throttle,来平滑普通throttle带来的长尾效应问题;
一般在使用普通磁盘时,之前的throttle机制即可很好的工作,所以这里默认filestore_queue_high_delay_multiple
和filestore_queue_max_delay_multiple
都为0;
针对高速磁盘,需要在部署之前,通过小工具ceph_smalliobenchfs
来测试下,获取合适的配置参数;
1
2
3
4
5
6
7
8
9
10
11
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注软件测试)
[外链图片转存中…(img-ydiktW1Q-1713120347422)]
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!