【数据结构】时间复杂度 空间复杂度 数据结构预备知识_链表malloc之后的空间复杂度(1)

(看到大O就知道这里面的值不是准确的值,而是大概值)

📌 注意事项:

① 一般情况下,时间复杂度计算式未知数都是用的 N,但是也可以是 M、K、X 等等其他的,如果出现其他字母(非N)的情况情况我们可以这么表示:

如果 M 远大于 N  → O(M)

如果 N 远大于 M  → O(N)

M 和 N 差不多大  → O(M + N)

② O(1) 不是代表算法运行一次,而是 “常数次” 。

💡 通过上面的例子,我们发现大O渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

📚 另外有些算法的时间复杂度存在最好情况、平均情况、最坏情况:

① 最好情况:任意输入规模的最小运行次数(下界)
     ② 平均情况:任意输入规模的期望运行次数
     ③ 最坏情况:任意输入规模最大的运行次数(上界)

时间复杂度是一个悲观的预期,当一个算法随着输入不同、时间复杂度不同,做一个悲观的预期,看最坏的情况!

💬 例子:在一个长度为N的数组(下面例题中会出现,先提前讲个大概)

① 最好情况:1 次找到

② 最坏情况:N 次找到

③ 平均情况:N/2 次找到

📚 在实际中,一般情况下我们主要关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N) 。当然,这不是绝对的!比如希尔排序很少出现最坏的情况,所以有时候我们也会看平均情况。

0x02 时间复杂度计算的实例

💬 实例1:计算 Func2 的时间复杂度

void Func2(int N) {
    int count = 0;
    for (int k = 0; k < 2 * N ; ++ k) {
        ++count;
    }

    int M = 10;
    while (M--) {
        ++count;
    }
    
    printf("%d\n", count);
}

💡 答案:O(N)

🔑 解析:基本操作执行了 2N+10 次,通过推导大O阶方法知道,时间复杂度为 O(N) 。因为当N越大,对10的影响就越小,所以+10省略。并且2N根据第三条规则(前面讲了),相乘时不是1时系数忽略,所以使用大O渐进法表示结果如下:

{\color{Magenta} F}({\color{Blue} N}) = 2{\color{Blue} N}+10

{\color{Red} O}({\color{Blue} N})

我们带到题里再看一遍规则:

① 用常数1取代运行时间中的所有加法常数。

② 在修改后的运行次数函数中,只保留最高阶项。

③ 如果最高阶存在且不是1,则去除与这个项目相乘的常数。

❓ 为什么不算 ++k

🔑 我们不需要算的那么精确,我们只需要算循环的次数,指的是算法逻辑走了多少次,而不是程序走了多少条指令。所以我们不需要考虑 ++k

💬 实例2:计算 Func3 的时间复杂度

void Func3(int N, int M) {
    int count = 0;
    for (int k = 0; k < M; ++ k) {
        ++count;
    }
    
    for (int k = 0; k < N ; ++ k) {
        ++count;
    }

    printf("%d\n", count);
}

💡 答案:O(M + N)

🔑 解析:基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(M+N)。一般情况下时间复杂度计算时未知数用的是N,但是也可以用其他未知数表示(前面讲过),所以使用大O渐进法表示结果如下:

{\color{Red} O}({\color{Blue} M}+{\color{Blue} N})

为了加深印象,我们再看一遍:

一般情况下,时间复杂度计算式未知数都是用的 N,但是也可以是 M、K、X 等等其他的,如果出现其他字母(非N)的情况情况我们可以这么表示:

如果 M 远大于 N  → O(M)

如果 N 远大于 M  → O(N)

M 和 N 差不多大  → O(M + N)

💬 实例3:计算 Func4 的时间复杂度

void Func4(int N) {
    int count = 0;
    for (int k = 0; k < 100; ++ k) {
        ++count;
    }

    printf("%d\n", count);
}

💡 答案:O(1)

🔑 解析:基本操作执行了10次,通过推到大N阶的方法,时间复杂度为O(1) 。值得注意的是,这里的 “1” 是常数次而不是代表算法运行1次。所以使用大O渐进法表示结果如下:

{\color{Magenta} F}({\color{Blue} N}) = 100

{\color{Red} O}(1)

💬 实例4:计算strchr 的时间复杂度

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

💡 答案:O(N)

🔑 解析:基本操作执行最好1次,最坏N次。因为时间复杂度一般取最坏,所以时间复杂度为O(N) 。使用大O渐进法表示结果如下:

worst: {\color{Magenta} F}({\color{Blue} N}) = ({\color{Blue} N}/2)

{\color{Red} O}({\color{Blue} N})

💬 实例5:计算BubbleSort 的时间复杂度

void BubbleSort(int* a, int n) {
    assert(a);
    for (size_t end = n; end > 0; --end) {
    int exchange = 0;
        for (size_t i = 1; i < end; ++i) {
            if (a[i-1] > a[i]) {
                Swap(&a[i-1], &a[i]);
                exchange = 1;
            }
        }

        if (exchange == 0) {
            break;
        }
    }
}


💡 答案:O(N^2)

🔑 解析:基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2) 。冒泡排序,前一个比后一个大就交换。这两个循环虽然嵌套在一起,但是里面的循环不是n,外面的循环也不是n,而是end,它是在变化的。{ N-1 N-2 N-3 … 1 }  ,所以他是个等差数列,使用大O渐进法表示结果如下:

{\color{Magenta} F}({\color{Blue} N})={\color{Blue} N}*({\color{Blue} N}-1)/2

{\color{Red} O}({\color{Blue} N}^2)

💬 实例6:计算BinarySearch 的时间复杂度

int BinarySearch(int* a, int n, int x) {
    assert(a);
    int begin = 0;
    int end = n - 1;
    while (begin < end) {
        int mid = begin + ((end-begin) >> 1);
        if (a[mid] < x)
            begin = mid + 1;
        else if (a[mid] > x)
            end = mid;
        else
            return mid;
    }

    return -1;
}

💡 答案:O(logN)

🔑 解析:基本操作执行最好1次,最坏O(logN)次,时间复杂度为O(logN)。使用大O渐进法表示结果如下:

{\color{Red} O}(log{\color{Blue} N})

❓ 记不得log是什么了?log是对数:

在这里,我不得不吹一下二分查找了,真的是个非常牛掰的算法!

N个数中查找          大概查找次数

1000                       10

100W                      20

1亿                          30

在中国14亿人口中查找一个人,最多只要31次就可以了!当然,二分查找查找对象前提是有序的。

💬 实例7:计算递归版阶乘Fac 的时间复杂度

long long Fac(size_t N)
{
    if (0 == N)
        return 1;
    return Fac(N - 1) * N;
}

💡 答案:O(N)

🔑 解析:通过计算分析发现基本操作递归了N次,时间复杂度为O(N) 。使用大O渐进法表示结果如下:

{\color{Red} O}({\color{Blue} N})

📚 递归算法:递归次数 * 每次递归调用次数

💬 实例8:计算递归版斐波那契数Fib 的时间复杂度

long long Fib(size_t N) {
    if(N < 3)
        return 1;
    return Fib(N-1) + Fib(N-2);
}

💡 答案:O(2^N)

🔑 解析:通过计算分析发现基本操作递归了2N次,时间复杂度为O(2N) 。使用大O渐进法表示结果如下:

{\color{Red} O}(2^{\color{Blue} N})

三、空间复杂度

0x00 空间复杂度的概念

📚 空间复杂度的定义:空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度。 空间复杂度并不是程序占用了多少bytes的空间,前面在介绍算法复杂度的时候就提到了如今我们已经不再关注 “空间” ,所以关注程序占用多少byte的空间是没有太大意义的。空间复杂度算的是变量的个数! 此外,空间复杂度的计算规则基本和时间复杂度没有什么区别,同样也使用 大O渐进表示法

📌 注意事项:函数运行时所需要的栈空间(即存储参数、局部变量和一些寄存器信息等)在编译期间就已经确定好了,因此空间复杂度主要是通过函数在运行的时候显式申请的额外空间来决定。

0x01 时间复杂度计算的实例

💬 实例1:计算BubbleSort 的空间复杂度

void BubbleSort(int* a, int n) {
    assert(a);
    for (size_t end = n; end > 0; --end) {
    int exchange = 0;
        for (size_t i = 1; i < end; ++i) {
            if (a[i-1] > a[i]) {
                Swap(&a[i-1], &a[i]);
                exchange = 1;
            }
        }

        if (exchange == 0) {
            break;
        }
    }
}

💡 答案:O(1)

🔑 解析:使用了常数个额外空间,所以空间复杂度为 O(1) 。

{\color{Red} O}(1)

💬 实例2:计算Fibonacci 的空间复杂度

// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n) {
    if(n==0)
        return NULL;

    long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
    fibArray[0] = 0;
    fibArray[1] = 1;
    for (int i = 2; i <= n ; ++i) {
        fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
    }

    return fibArray;
}

💡 答案:O(N)

🔑解析:malloc 动态开辟了N个空间,空间复杂度为 O(N)

{\color{Red} O}({\color{Blue} N})

💬 实例3:计算递归版阶乘Fac 的空间复杂度

long long Fac(size_t N)
{
    if (0 == N)
        return 1;
    return Fac(N - 1) * N;
}

💡 答案:O(N)

🔑 解析:递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N) 。

{\color{Red} O}({\color{Blue} N})

四、常见复杂度对比

0x00 常见的复杂度
一般算法常见复杂度表
92366
3N+4
3N^2+4N+5
3log(2)n+4
2n+3nlog(2)n+14
n3+2n2+4n+6
2^N

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以点击这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 10
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值