先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新Golang全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip1024b (备注go)
正文
#include
#include <Eigen\Dense>
using namespace std;
using namespace Eigen;
int main()
{
Matrix2d a;
a << 1, 2,
3, 4;
MatrixXd b(2, 2);
b << 2, 3,
1, 4;
cout << “a + b =\n” << a + b << endl;
cout << “a - b =\n” << a - b << endl;
cout << “Doing a += b;” << endl;
a += b;
cout << “Now a =\n” << a << endl;
cout << "a^T= " << a.transpose() << endl;
cout << "ab= " << ab << endl;
Vector3d v(1, 2, 3);
Vector3d w(1, 0, 0);
cout << “-v + w - v =\n” << -v + w - v << endl;
cout << v << endl;
cout << v.transpose() << endl;
system(“pause”);
}
运行结果如下
3.深入学习
本博客只是对矩阵运算库的简介、汇总、环境配置,因此不会讲太详细的使用。主要是本人太菜了,讲不来。不过为了内容的完整型,我会给几个好的比较完整的eigen学习教程。
二、C++矩阵运算库 - Armadillo
Armadillo是一个开源高性能C++线性代数库,提供了和Matlab中常用命令接近的函数接口,可以方便地将Matlab/Octave开发的算法移植到C++中。特别地,我们可以先在Matlab环境中编程进行算法原型验证,待算法充分验证通过之后再利用Armadillo移植到C++中编译为独立的可执行程序。虽然Matlab也支持利用mcc直接将m文件编译生成动态链接库文件或者可执行程序,但是这些代码的运行需要Matlab运行环境(MCR)的支持;而通过Armadillo进行移植则可以完全脱离Matlab环境。
1.下载及安装
1.1Linux安装
执行命令:
sudo apt-get install libopenblas-dev
sudo apt-get install liblapack-dev
sudo apt-get install libarpack2-dev
sudo apt-get install libsuperlu-dev
下载Armadillo包,链接:https://sourceforge.net/projects/arma/files/armadillo-9.600.6.tar.xz/download
在Armadillo的安装目录打开终端执行:
cmake .
make
1.2Windows配置
因为Armadillo需要C++11的支持,而DEVC++好久没更新编译器了,支持不好,因此我们换用visual studio2019来测试。
下载Armadillo包,链接:https://sourceforge.net/projects/arma/files/armadillo-9.600.6.tar.xz/download
下载解压后需要配置头文件和库文件的路径。
可以参考这篇文章:基于vs2017的armadillo配置教程(超详细!)
2.测试使用
测试代码如下:
#include
#include
using namespace arma;
int main()
{
//生成一个随机矩阵A,大小为5x5,矩阵每个元素的范围为:(0,10)
mat A = randu(5, 5) * 10;
A.print(“原矩阵A = \n”);
}
3.深入学习
看了下,好像中文没啥好的教程,不如直接看帮助手册。
三、C++矩阵运算库 - boost
Boost在C++中地位非常高,被称为C++的准标准库,其中的ublas模块包含矩阵类,用法如下:
#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/io.hpp>
#include
namespace ublas = boost::numeric::ublas;
int main()
{
ublas::matrix A(3, 3);
for (unsigned i = 0; i < A.size1(); ++i)
for (unsigned j = 0; j < A.size2(); ++j)
A(i, j) = 3*i + j;
std::cout << A << std::endl;
return 0;
}
关于boost的配置问题,可以参考博客boost库在visual studio、DevC++和vscode上的环境配置
四、C语言矩阵运算库 -
其实C++矩阵运算库已经很好用了,但是可能在某些场景下,因为项目历史或者编译器的原因,我们必须要使用C语言来实现矩阵运算。
好像几乎没有特别知名C语言矩阵运算库,因此在此总结各位网友写的C语言矩阵运算库。
1.C语言矩阵库1
这个详细讲解了怎么自己实现一个矩阵运算库,想学习写一个自己的C语言矩阵运算库可以参考一下。
2.C语言矩阵库2
地址:我的C语言矩阵库
github地址:https://github.com/colourfate/math_matrix
3.C语言矩阵库3
4.C语言矩阵库4
地址:基于C语言的矩阵运算库
5.C语言矩阵库5
github地址:https://github.com/fellylanma/easyMatrix
6.C语言矩阵库6
github地址:https://github.com/zjc666/LightMatrix
7.C语言矩阵库7
github地址:https://github.com/kimwolf-fs/c_data_structure/tree/master/matrix
8.C语言矩阵库8
地址:异想家纯C语言矩阵运算库
9.C语言矩阵库9
github地址:https://github.com/Amoiensis/Matrix_hub
10.C++矩阵运算库
这个库是我同学写的,帮他传播一下!!!
地址:C++矩阵库
github地址:https://github.com/TING2938/Analysis
总结
在条件允许的情况下,可以优先使用eigen矩阵运算库。
如果条件不允许或者希望自己能用一个更加小巧顺手的矩阵运算库,那可以参考上面,自己实现一个。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注Go)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
自己能用一个更加小巧顺手的矩阵运算库,那可以参考上面,自己实现一个。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注Go)
[外链图片转存中…(img-CxlPh1qm-1713433138754)]
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!