if 条件:
代码
elif 条件:
代码
else:
代码
使用:
继续使用上面的例子
a = int(input("请输入一个整数"))
b = int(input("请输入一个整数"))
c = a+b
if c<10:
print("两数之和小于10")
elif c==10:
print("两数之和等于10")
else:
print("两数之和大于10")
好的,好的,我们的程序能做的事更多了
这次就输入一个5一个6吧
欧克,完美的实现了我们的功能
1.8 循环控制语句
循环,循环,何为循环,就是一直进行,不会停止
那么怎么停止呢?那也得我们自己设置条件
循环控制语句有两种,一种是for循环,一种是while循环。
1. for循环
格式:
一般来说,for循环使用较多
for 临时变量 in 循环的条件:
代码
我们的for循环需要一个临时变量,不需要提前定义一个变量去接收循环里面的值
这样对于内存也是一种释放,提前定义变量的话,就是一个全局变量,会一直占用内存,而这个for循环的临时变量就在循环结束后销毁,释放内存。
用白话文讲就是,临时变量只能在循环开始-循环结束前活着,循环结束的时候就是临时变量寿终正寝的时候,有点类似于卸磨杀驴(手动狗头)
而且我们的for并不需要我们手动更新变量
使用:
还记不记得上一篇的变量最后面,我们使用了10个print()函数输出了10次Hello World!
那么我们也可以用我们的循环,用更少的代码,实现这个效果
a = "Hello World!"
for i in range(10):
print(a)
代码中的i是从0开始的,而这个range()函数里面的值,就是从i到10(不含10),因此,会循环10次
来运行看看吧
完美,达到了我们的目的
2. while循环
格式:
while 条件:
代码
使用:
还是上面的,输出10次Hello World!
a = "Hello World!"
i = 0
while i<10:
print(a)
i+=1
while循环不仅需要定义全局变量,而且还需要我们自己手动更新变量的值(i)
如果不更新的话,i的值就不会改变,条件就会一直成立,循环就不会停止,因此,使用while的时候,一定不要忘了更新变量
3. 主动循环结束
三种语句:break return continue都可以使循环停止
不过return一般都是用到函数里面的,都是使用break
而continue 不是用来终止循环的,具体作用看下面代码示例
break:
看汉语也有个大概思想:打破
它的作用是打破循环,使循环碰到它后终止
break的作用是打破结构体,使程序退出当前代码块
下面看这个例子,我们要实现的功能是循环获取用户从键盘输入的数据,直到输入q来推出程序
while True:
a = input()
if a == "q":
break
else:
print(a + " 输入成功,输入 'q' 退出程序")
运行结果:
此时我们发现,输入q推出了,但是我们看着并不舒服,我们还可以加个提示,或者让他再输入一次“确认”来确认是否要推出
while True:
a = input()
if a == "q":
print("确定要推退出,确定的话,请输入确定退出来确定")
if input() == "确定退出":
print("已退出,程序结束")
break
else:
print(a + " 输入成功,输入 'q' 退出程序")
运行结果:
这样就完美了,我这可不是谁字数啊,我这是强迫症(认真脸)!
continue:
continue是跳出当前循环,执行下一循环,也就是说,他并没有令循环终止的能力,他只能令循环少循环一些次数
我们先把上面的代码里面的break换成continue试试
while True:
a = input()
if a == "q":
print("确定要推退出,确定的话,请输入确定退出来确定")
if input() == "确定退出":
print("已退出,程序结束")
else:
print(a + " 输入成功,输入 'q' 退出程序")
行不通
退出不了!
果然吧,那么continue有啥用呢?
我先不说,你先看:
for i in range(10):
if i % 5 == 0:
continue
else:
print(i)
运行结果:
return:
return意为返回,是用在函数中的返回值的,至于函数是什么,我们会在本专栏中陆续讲述,你先看效果就可以了
我们计算当i的值循环到5时,让a+b,然后计算完终止
当i为5时,不管循环是否进行完,都会强行终止
def sum(a, b):
for i in range(10):
if i<a:
pass
else:
a+=b
return a
print(sum(5, 2))
pass的意思就相当于什么都不做
运行结果为:7
那么如果我们把return的位置换一下呢?
def sum(a, b):
for i in range(10):
if i<a:
pass
else:
a+=b
return a
print(sum(5, 2))
我们的循环会在第一次就终止,因为第一次i的值为0,满足判断条件,执行return语句,结束循环
那么如果我们再换一下呢?我们这次放在循环外面,那么肯定是循环执行完才会结束了,会把a+=b执行一次,还是7
def sum(a, b):
for i in range(10):
if i<a:
pass
else:
a+=b
return a
print(sum(5, 2))
第四阶段
1.9 函数式编程
注意不要和数学中的函数搞混了
那么到底什么是函数呢?
函数其实就是当我们在程序中需要大量重复的代码块,我们将其封装成一个代码块,用一个名字来表示,而这个名字是标识符。需要遵循标识符的规则。
函数的优点就是避免了代码重复率,提高开发效率。
举个例子:我们需要让电脑给我们表白(骚话),输出一段情话,就比如这一段
"我爱你"
"我要给你生猴子"
"啊啊啊,好喜欢你"
按照之前所学,一个一个的print()就行了嘛
但是我需要你什么时候都能给我来一段表白(骚话)呢?
这个时候恐怕用循环就不妥了吧,就用我们的函数了
当然,python自带的有很多内置函数,而我们自己定义的函数叫做自定义函数。
1. 无参函数:
无参函数是最基本的函数,基本上很少用到,都是拿来练习理解函数的。
def 函数名字():
代码
使用:
# 定义
def Qinghua():
print("我爱你")
print("我要给你生猴子")
print("啊啊啊,好喜欢你")
# 调用
Qinghua()
运行结果:
好像,并没有多大作用吗!
其实不然,看这个
# 定义
def Qinghua():
print("我爱你")
print("我要给你生猴子")
print("啊啊啊,好喜欢你")
# 调用
Qinghua()
for i in range(10):
print("经过了{}秒".format(i))
Qinghua()
他可以在你任何想使用的时候,都可以通过调用的形式使用,而不需要你再打了。
就像变量一样,不过函数要比普通的变量复杂一些
2. 有参函数
函数是可以传递参数的,而参数分为形参和实参
形参就是形式上的参数,就像一家公司有员工,清洁工,董事长等职位,但是有些职位却空着,这些空着的职位,就相当于形参,需要有人去做这个职位,才能发挥作用,而这个能发挥职位作用的人,就叫做实参(实际参数)。
而我们定义有参函数的时候,需要定义形参来表示我们的函数,有这些东西,你想让我们的函数去发挥作用的话,就需要给我们传递实际参数。
有参有参,在哪里体现的有参呢?
在我们定义的时候,我们需要在括号里面定义形参,用于接收参数
而在我们调用的时候,也是通过函数名后面的括号传递实参的
使用:
我们会定义一个有参函数来使两个参数拼接在一起,并遍历
def PinJie(a, b):
str_ = str(a)+str(b)
print(str_)
for i in str_:
print(i)
PinJie("sasa", 4564)
#也可以这么写
"""
PinJie(a="sasa",b=4564)
这样写的好处是
就算你的位置写错了
参数传递的也还是对的
也就是说,参数传递的位置不固定
就像这样
PinJie (b=4564, a='sasa')
是完全一样的
"""
运行:
3. return的作用
之前说过,return一般是使用在函数中的,那么他的作用是什么呢?
先根据见名知意的规律来解读:返回
确实,他的作用就是返回,返回值
通过return xxx
来达到返回值得目的,这里是返回了xxx这个东西,至于xxx 是什么。。众所周知,xxx可以什么都是!
那么返回的值到了哪里呢?到了函数的调用那里,这个函数名字(参数)
就是返回的值
使用:
看上面的那个函数,他显示拼接后的结果,使用了print()函数(内置函数)
那么我们使用return试试
def PinJie(a, b):
str_ = str(a)+str(b)
return str_
for i in str_:
print(i)
PinJie("sasa", 4564)
那么会怎么样呢?
答案是,什么都不会显示!
为什么呢?因为我们没有使用print()函数(瞎说,那不是有!)
为什么这么说呢?因为上次讲过,return用于结束一段代码,而我们在中间return,下面的训话也就不会被执行,就直接结束了。
怎么显示循环呢?把return放在函数最下面,我就不展示了,自己去试试,不然优点水字数!(狗头保命!)
那么上面说了返回的值被 **函数名()**接收了,那么他现在就是一个值了,想要让它显示,那么只能用print()了啊!
def PinJie(a, b):
str_ = str(a)+str(b)
return str_
for i in str_:
print(i)
p = PinJie("sasa", 4564)
print(p)
结果:
他就显示了返回值,也就是函数拼接的结果
1.10 面向对象编程
第五阶段
1. 理解
编程语言有面向对象(Java,Python)和面向过程(C语言)之分,面向对象需要一些抽象的思维才行。
面向过程和面向对象有什么区别呢?
面向过程注重亲力亲为,意思也就是自己去干这件事;而面向对象更倾向于找个人给自己做事。
就拿那个老生常谈的例子来说吧——洗衣服:
面向过程:
面向过程的洗衣服是:
- 把衣服拿到洗衣机旁边
- 放进去
- 等待
- 捞出来
等下一次洗衣服,你还得重复这些操作
而这就是函数式编程
面向对象:
而面向对象则是:
创造一个机器人
教他如何洗衣服
把衣服拿到洗衣机旁边
放进去
等待
捞出来
让他去干活
等下一次需要洗衣服,就让机器人去干就行了
而面向对象绕不开的就是类和对象了,接着往下看吧
2. 类
类是个抽象的东西,比如说人类,动物类,植物类,类是具有某些相同特征的事物的集合
那么如何定义一个属于我们的类呢?有三种方法,推荐使用第三种
# 定义一个Xxx类
class Xxx:
代码块
class Xxx():
代码块
class Xxx(object):
代码
这就成了
而类需要有属性,行为(方法)等东西
而属性就是在类里面的局部变量
而行为就是定义在类里面的函数
构造方法:
而每个类都有一些默认的行为(方法),比如这个构造方法__init__
每个类都默认有这个构造方法,而 构造方法里面的内容是会在实例化的时候就运行的,也就是,你实例化的时候,就会调用这个__init__
构造方法。
而对象是什么呢?
3. 对象
对象是类的实例化,拿人类来说,人是一个类,而我们每个人都是人这个类的实例化对象。
看代码:
# 定义一个人类
class Person(object):
pass
# 实例化对象
xiaoming = Person()
很明显,xiaoming
是Person
这个类的实例化对象,换句话说,xiaoming
是个Person
,在这句话里,xiaoming
就是对象,Person
就是类
4. 代码实现洗衣机
代码:
class Robot(object):
def \_\_init\_\_(self):
print("把衣服拿到洗衣机旁边")
print("把衣服放进洗衣机")
print("等衣服洗好")
print("把衣服捞出来")
xiaoming = Robot()
运行结果:
5. 封装
可以将构造方法的参数,进行封装,让其在每个方法中都可以调用
想着这样的代码就是错的
class Person(object):
def \_\_init\_\_(self, name, age):
pass
def speak(self):
print(f"{age}岁的{name}会说话")
Menger = Person("布小禅", 20)
name = Menger.name
age = Menger.age
person.speak()
print("姓名:{} \n年龄:{}".format(name, age))
因为speak方法里面的name和age,计算机不知道是谁,计算机不认识他们两个,而刚刚那两行self.name = name
和self.age = age
就是相当于告诉计算机name和age是类的参数
class Person(object):
def \_\_init\_\_(self, name, age):
self.name = name
self.age = age
def speak(self):
print(f"{age}岁的{name}会说话")
Menger = Person("布小禅", 20)
name = Menger.name
age = Menger.age
Menger.speak()
print("姓名:{} \n年龄:{}".format(name, age))
这样就对了,输出为:
姓名:布小禅
年龄:20
6. 继承
Python的面向对象是可以继承的,就像你继承了你爸爸和你妈妈的部分特征,Python中的子类,继承父类,说起继承,其实你们也都见过了,就我上一篇说的三种定义类的方法的第三种:
class ClassNmae(object):
代码块
那个ClassNmae
后面的括号里的object
就是父类,而ClassName
是子类
子类继承父类的所有东西
7. 私有化
上篇说过封装,既将我们不想让别人看到代码的内容,但是又需要用到的内容,通过类内部调用来实现调用。
说到这里却不得不提一下上篇的:
class Person(object):
def \_\_init\_\_(self, name, age):
self.xxx = name
self.xxxx = age
这里面self后面的名字,是可以自己随意命名的,上一篇和后面一样只是为了好记忆罢了
只要你记得住,便是颠倒也是无事
属性私有化:
何为属性私有?
举个例子便是:你的私房钱,你的手机电脑里面的小秘密等等这些不想被别人知道的东西
那么上面就说了,封装的目的是什么,不就是隐藏那些不想让别人知道的代码吗
所以有个属性私有化,可以让你的类属性变成私有的,这可和上篇的封装不一样,封装了还能通过实例化对象调用;这个属性一旦变成私有的,你在类外部是无法调用的
那我想用了怎么办?在类内部调用嘛!
好,叭叭了这么多,想必你们也得烦了,上代码
使用格式:
class Xxx(object):
age = 20
_name = "Xxx"
这种前面带着一个下划线的就是私有属性,无法通过类外部实例化对象的方法进行调用
具体应用:
"""
定义一个挺人类
含有姓名,年龄,体重,身高
将体重设置私有化
通过类内部调用使得能够在类外部看到你的体重
"""
class Person(object):
_weight = 70
def \_\_init\_\_(self, name, age, height):
self.name = name
self.age = age
self.height = height
def weightPrint(self):
print("我的体重是:", self._weight)
person = Person("布小禅", 20, 180)
person.weightPrint()
这个体重就无法通过person.weight
、person._weight
这样调用,因为这个属性是私有的
方法私有化:
我觉得这个倒是不必多说,只需要在定义的类方法名字前面也加一个_
就可以了
class Person(object):
def \_love(self):
print("我暗恋Xxx")
这个方法也是无法通过实例化对象来调用的,调用需要这样:
class Person(object):
def \_love(self):
print("我暗恋Xxx")
def speakLove(self):
self._love()
二、 numpy快速入门
第六阶段
numpy是什么?
扩展库numpy是Python支持科学计算的重要扩展库,是数据分析和科学计算领域如scipy、pandas、sklearn 等众多扩展库中的必备扩展库之一,提供了强大的N维数组及其相关运算、复杂的广播函数、C/C++和Fortran代码集成工具以及线性代数、傅里叶变换和随机数生成等功能。本章童点介绍数组与矩阵及其相关运算,为学习和理解后面章节中的数据分析、机器学习打下良好的基础。
简单来说就是你用来为人工智能领域打基础的东西,私话说得好,基础不牢,地动山摇嘛~
所以这个地方可要好好学习哦~~
2.1 简单使用
在numpy中使用的不是自带的数据类型list
,而是numpy中的ndarray
那为什么使用ndarray
而不是使用list
呢?
因为ndarray是由c/c++写出来的,占用内存更小,使用速度更快
创建一个ndarray的方法有很多,这里说下使用array方法转化的
#!/usr/bin/env python
# -\*- coding: utf-8 -\*-
# @Author: Smly
# @datetime: 2021/9/26 22:22
# @Version: 1.0
import numpy as np
li = [1, 2, 3]
tp = (1, 2, 3)
nday1 = np.array(li)
nday2 = np.array(tp)
print("\*\*\*\*\*类型\*\*\*\*\*")
print(type(nday1))
print(type(nday2))
print("\*\*\*\*\*数组\*\*\*\*\*")
print(nday1)
print(nday2)
输出结果:
\*\*\*\*\*类型\*\*\*\*\*
<class 'numpy.ndarray'>
<class 'numpy.ndarray'>
\*\*\*\*\*数组\*\*\*\*\*
[1 2 3]
[1 2 3]
2.2 数组使用
如果元素相同的话,可以进行加减乘除
- 在元素个数相同的情况下,可以进行数组间的加减
- 在元素个数相同的情况下,可以进行数组间的乘除
- 对某个数进行的乘除,可以自动进行到所有元素
看例子理解:
#!/usr/bin/env python
# -\*- coding: utf-8 -\*-
# @Author: Smly
# @datetime: 2021/9/26 22:22
# @Version: 1.0
import numpy as np
li = [1, 2, 3] # 列表
tp = (1, 2, 3) # 元组
nday1 = np.array(li) # 内置方法将列表转为ndarray
nday2 = np.array(tp) # 内置方法将元组转为ndarray
nday3 = np.array(range(5)) # 使用range内置函数方法生成ndarray连续数组
nday4 = np.array(range(5, 10)) # 使用range内置函数方法生成ndarray连续数组
print("\*\*\*\*\*类型\*\*\*\*\*")
print(type(nday1))
print(type(nday2))
print(type(nday3))
print(type(nday4))
print("\*\*\*\*\*数组\*\*\*\*\*")
print(nday1)
print(nday2)
print(nday3)
print(nday4)
print("\*\*\*\*\*数组加减\*\*\*\*\*")
print(nday2 + nday1)
print(nday2 - nday1)
print(nday4 - nday3)
print(nday3 + nday4)
# 在元素个数相同的情况下,可以进行数组间的加减
print("\*\*\*\*\*数组乘除\*\*\*\*\*")
print(nday2 \* nday1)
print(nday2 // nday1)
print(nday4 \* nday3)
print(nday4 // nday3)
# 在元素个数相同的情况下,可以进行数组间的乘除
print(nday1 \* 3)
print(nday2 // 2)
print(nday3 \* 2)
print(nday4 // 2)
# 对某个数进行的乘除,可以自动进行到所有元素
运行结果:
\*\*\*\*\*类型\*\*\*\*\*
<class 'numpy.ndarray'>
<class 'numpy.ndarray'>
<class 'numpy.ndarray'>
<class 'numpy.ndarray'>
\*\*\*\*\*数组\*\*\*\*\*
[1 2 3]
[1 2 3]
[0 1 2 3 4]
[5 6 7 8 9]
\*\*\*\*\*数组加减\*\*\*\*\*
[2 4 6]
[0 0 0]
[5 5 5 5 5]
[ 5 7 9 11 13]
\*\*\*\*\*数组乘除\*\*\*\*\*
[1 4 9]
[1 1 1]
[ 0 6 14 24 36]
[0 0 0 0 0]
[3 6 9]
[0 1 1]
[0 2 4 6 8]
[2 3 3 4 4]
2.2 创建数组
刚刚的array()
方法是将列表和元组等迭代对象转为ndarray数组
接下来要说的是自动创建数组
1. 使用empty创建空数组
里面会有初始值,但是数组初始为None
#!/usr/bin/env python
# -\*- coding: utf-8 -\*-
# @Author: Smly
# @datetime: 2021/9/28 12:29
# @Version: 1.0
import numpy as np
em1 = np.empty(5) # 创建一个长度为5的空数组
em2 = np.empty((2, 2)) # 创建一个2\*2的空二维数组
print("一维数组,长度为5", em1)
print("二维数组,长度为2\*2", em2)
输出结果:
[9.96754604e-312 9.96754614e-312 2.60799828e-310 9.34609789e-307
0.00000000e+000]
[[6.95299778e-310 9.96747617e-312]
[0.00000000e+000 6.95299776e-310]]
2. 使用arange函数创建
arange是numpy自带的的一个方法,作用与range这个Python内置函数相差无几,都是生成数组
先导入numpy包
import numpy as np
然后创建数组
print("\*\*\*\*\*ararge创建数组\*\*\*\*\*")
aran_arr1 = np.arange(5)
aran_arr2 = np.arange(5, 10)
print("\*\*\*\*\*类型\*\*\*\*\*")
print(type(aran_arr1))
print(type(aran_arr2))
print("\*\*\*\*\*数组\*\*\*\*\*")
print(aran_arr1)
print(aran_arr2)
3. 使用zeros函数生成数组
zeros函数是numpy自带的方法,作用是生成指定数量的全0一维数组,全0二维数组等
看下面的例子:
生成一个具有三个元素的一维数组和一个具有五个元素的一维数组:
#!/usr/bin/env python
# -\*- coding: utf-8 -\*-
# @Author: Smly
# @datetime: 2021/9/27 21:31
# @Version: 1.0
import numpy as np
zero_arr = np.zeros(3)
zrro_arr2 = np.zeros(5)
print(zero_arr)
print(zrro_arr2)
运行结果:
[0. 0. 0.]
[0. 0. 0. 0. 0.]
当然这只是一位数组,你还可以生成二维数组,也就是矩阵
使用如下代码可以生成一个三行三列的矩阵
zero_arr3 = np.zeros((3, 3))
输出看看:
print(zero-arr3)
运行结果:
[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]
4. ones函数生成数组
使用ones函数生成全1函数,方法同zeros
import numpy as np
ones_arr1 = np.ones(3)
输出结果:
[1. 1. 1.]
生成一个三行三列的矩阵
import numpy as np
ones_arr2 = np.ones((3, 3))
输出结果:
[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]]
5. diag函数生成对角矩阵
什么是对角矩阵?你应该听说过对角线,矩阵就是生成在对角线上的矩阵
函数参数是一个元祖
看代码和运行结果能够理解的更深刻
import numpy as np
diag_arr = np.diag((4, 3, 2, 1))
将diag_arr的输出的结果为:
[[4 0 0 0]
[0 3 0 0]
[0 0 2 0]
[0 0 0 1]]
看,对角线是不是你函数的参数,这下理解了吧
6. N维数组
N维数组就是多维数组,可以理解为数组里面还是数组,里面还是数组,可以参照这个形式
[[[1 2]
[3 4]]
[[5 6]
[7 8]]]
这个概念确实有点抽象,有点难理解。这就是一个三维数组,是通过三维列表使用array方法转换成ndarray的
代码:
#!/usr/bin/env python
# -\*- coding: utf-8 -\*-
# @Author: Smly
# @datetime: 2021/9/27 13:29
# @Version: 1.0
import numpy as np
li = [
[[1, 2], [3, 4]],
[[5, 6], [7, 8]]
]
te1 = np.array(li)
print(te1)
当然,二维数组也算是N维数组
2.3 矩阵
数组是数组,矩阵是矩阵。
数组是一种数据结构,可以存储多种数据,可以有多维
矩阵是数学中的一个概念,只能存放数字,并且只能是二维的形式
生成矩阵的方法就和生成N维数组的方法是一样的
先使用列表创建二维列表,然后再使用numpy的方法转成矩阵,当然也有好几中生成矩阵的方法
import numpy as np
li = [[1, 2, 3, 4], [5, 6, 7, 8]]
j1 = np.matrix(li)
print(j1)
print(type(j1))
print(j1.dtype)
输出该矩阵:
输出矩阵: [[1 2 3 4]
[5 6 7 8]]
矩阵在Python的类型: <class 'numpy.matrix'>
在numpy中的类型: int32
矩阵可以进行各种数学运算,在numpy子女宫都得到了很好的支持,这里就不细说了
2.4 广播
何为广播,广播就是能将你的东西发送到各个区域,一般在计算机中是将信息发送到局域网络中的每个计算机中。
而在numpy中也有广播,只不过他是将元素自动补到数组,矩阵上,就像你在上面看到的,一个数组乘除一个元素,数组中的所有元素都会乘这个数
import numpy as np
li1 = [1, 2, 3, 4]
print(np.array(li1)\*10)
输出结果:
[10 20 30 40]
这个就是广播,就是将数字10播到li转成的数组中,能够让数组所有元素都乘10。
而不同维度的数组也可以这样
#!/usr/bin/env python
# -\*- coding: utf-8 -\*-
# @Author: Smly
# @datetime: 2021/9/27 13:40
# @Version: 1.0
import numpy as np
li = [[1, 2, 3, 4], [5, 6, 7, 8], [2, 4, 6, 8]]
gb1 = np.array(li)
li1 = [1, 2, 3, 4]
gb2 = np.array(li1)
print(gb1\*gb2)
将一维数组的每个元素挨个广播到二维数组,前提是:
二维数组中的一维数组的个数与一维数组的个数是相同的
运行结果:
[[ 1 4 9 16]
[ 5 12 21 32]
[ 2 8 18 32]]
2.5 访问数组元素
numpy自带了一个insert
函数,可以往数组中插入元素
看实例:
li = [[1, 2, 3, 4], [5, 6, 7, 8], [2, 4, 6, 8]]
gb1 = np.array(li)
np.insert(gb1, 1, [1, 2, 3, 4])
输出结果:
[1 1 2 3 4 2 3 4 5 6 7 8 2 4 6 8]
还有一个自带的add函数,可以进行数组的相加减
数组嘛,可以使用下标来获取数组元素
import numpy as np
li1 = [1, 2, 3, 4]
gb2 = np.array(li1)
print(gb2[1])
输出结果为:
2
当然,它是一个数组,你理所应当的也可以使用循环语句来遍历数组
三、matplotlib快速入门
第七阶段
matplotlib是一个将数据可视化的模块。
什么你连什么是数据可视化都不知道是什么?
高中学的函数(可别跟Python中的函数搞混了)知道吧,把函数的图像画出来,就是数据可视化了
matplotlib是一个数据可视化的标准库,与numpy模块,pandas模块都很适用。
它能够绘制多种形式的图像,包括:
- 折线图 —— plot ()
- 散点图 —— scatter ()
- 饼状图 —— pie ()
- 柱状图 —— bar ()
- 雷达图 —— polar ()
- 三维图 —— mplot3d
3.1 基础理论
作图,我们需要有数据,坐标轴标签,标题,坐标轴刻度等属性。
- 数据可以使用numpy生成一维列表,在数学中也叫向量。
- 坐标轴标签由xlabel(),ylabel()方法(函数)设置
- 标题由title()方法(函数)设置
- 坐标轴刻度可以使用xticks (),yticks ()方法(函数)设置
3.2 绘制折线图
导入模块:
import numpy as np
# numpy用于生成数据
import matplotlib.pyplot as plt
# 使用matplotlib中的pyplot模块进行绘图
生成x轴,y轴数据:
x = np.arange(0,6,0.1) # x轴数据
y = np.sin(x) # y轴数据
绘制图案:
plt.plot(x,y,label="sin")
# 以x为x轴数据,y为y轴数据,绘制折线图,并设置线上的标签为sin
设置标题等属性:
plt.xlabel("number") # x轴标签
plt.ylabel("sin") # y轴标签
plt.title("sin fun") # 图像标题
使图像显示出来:
plt.show() # 显示图像
图像显示效果:
3.3 绘制散点图
将代码绘制图像的plt.plot()
修改成plt.scatter()
全部代码:
import numpy as np
# numpy用于生成数据
import matplotlib.pyplot as plt
# 使用matplotlib中的pyplot模块进行绘图
x = np.arange(0, 6, 0.1) # x轴数据
y = np.sin(x) # y轴数据
plt.scatter(x, y, label="sin")
# 以x为x轴数据,y为y轴数据,绘制折线图,并设置线上的标签为sin
plt.xlabel("number") # x轴标签
plt.ylabel("sin") # y轴标签
plt.title("sin fun") # 图像标题
plt.show() # 显示图像
3.4 绘制饼状图
绘制一个编程语言的饼状图,数据随便写的,不要当真,还有一点,默认不支持中文
先导入模块
import numpy as np
# numpy用于生成数据
import matplotlib.pyplot as plt
# 使用matplotlib中的pyplot模块进行绘图
创建数据:
student_souce = np.array([25, 35, 45, 60])
绘制图案:
plt.pie(student_souce, labels=["C", "Python", "Java", "C+++"], autopct='%.2f%%')
# 设置student\_souce为数据,每个数据的名字为labels的参数,并格式化输出各个所占百分比
设置标题与显示图像:
plt.title("Test") # 图像标题
plt.show() # 显示图像
完整代码:
#!/usr/bin/env python
# -\*- coding: utf-8 -\*-
# @Author: Smly
# @datetime: 2021/9/28 12:56
# @Version: 1.0
import numpy as np
# numpy用于生成数据
import matplotlib.pyplot as plt
# 使用matplotlib中的pyplot模块进行绘图
student_souce = np.array([25, 35, 45, 60])
plt.pie(student_souce, labels=["C", "Python", "Java", "C+++"], autopct='%.2f%%')
# 设置student\_souce为数据,每个数据的名字为labels的参数,并格式化输出各个所占百分比
plt.title("Test") # 图像标题
plt.show() # 显示图像
运行结果:
3.5 绘制柱状图
先生成数据,然后再绘制图像
#!/usr/bin/env python
# -\*- coding: utf-8 -\*-
# @Author: Smly
# @datetime: 2021/9/28 13:02
# @Version: 1.0
import numpy as np
# numpy用于生成数据
import matplotlib.pyplot as plt
# 使用matplotlib中的pyplot模块进行绘图
x = np.arange(0, 6) # x轴数据
plt.bar(x, x)
# 以x为x轴数据,x为柱体高度,绘制柱状图
plt.xlabel("number") # x轴标签
plt.ylabel("sin") # y轴标签
plt.title("sin fun") # 图像标题
plt.show() # 显示图像
运行结果:
3.6 图添加网格线
使用gird()
方法(函数)来设置网格线
函数参数:
- b:可选,默认为 None,可以设置布尔值,true 为显示网格线,false 为不显示,如果设置 **kwargs 参数,则值为 true。
- which:可选,可选值有 ‘major’、‘minor’ 和 ‘both’,默认为 ‘major’,表示应用更改的网格线。
- axis:可选,设置显示哪个方向的网格线,可以是取 ‘both’(默认),‘x’ 或 ‘y’,分别表示两个方向,x 轴方向或 y 轴方向。
- **kwargs:可选,设置网格样式,可以是 color=‘r’, linestyle=’-’ 和 linewidth=2,分别表示网格线的颜色,样式和宽度。
具体效果就自己往上面的代码里面的plt.show()
上面添加一个plt.gird()
四、数学基础
人工智能需要不少的数学基础:线性代数,概率学,高数等
粉丝福利:
将从评论区抽取粉丝送出**《人工智能数学基础》**一本,注意只送粉丝哦
10.1号公布送书结果
书本介绍:
- 零基础也能快速入门。本书从最基础的高等数学基础讲起,由浅入深,层层递进,在巩固固有知识的同时深入讲解人工智能的算法原理,无论读者是否从事计算机相关行业,是否接触过人工智能,都能通过本书实现快速入门。
- 全新视角介绍数学知识。采用计算机程序模拟数学推论的介绍方法,使数学知识更为清晰易懂,更容易让初学者深入理解数学定理、公式的意义,从而激发起读者的学习兴趣。
- 理论和实践相结合。每章最后提供根据所在章的理论知识点精心设计的“综合性实例”,读者可以通过综合案例进行实践操作,为以后的算法学习奠定基础。
- 大量范例源码+习题答案,为学习排忧解难。本书所有示例都有清晰完整的源码,每章之后设有习题并配套题目答案,讲解清晰,解决读者在学习中的所有困惑。
一、网安学习成长路线图
网安所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、网安视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
三、精品网安学习书籍
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、网络安全源码合集+工具包
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
五、网络安全面试题
最后就是大家最关心的网络安全面试题板块
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!