复杂度
时间复杂度
什么叫做时间复杂度?
看做了多少次常数操作,且只要最高项,不要常数和系数,然后剩下的东西。按照最差情况来估计。
什么叫做常数操作?
一个操作如果和样本的数据量没有关系,每次都是固定时间内完成的操作,叫做常数操作。
谁的时间复杂度低谁的算法就更好。
时间复杂度相同怎么办?
当时间复杂度相等时,然后再分析不同数据样本下的实际运行时间,也就是“常数项时间”,不能看常数或者系数的大小,因为无法评判*和与的计算速度。
如下面的示例 两个都是O(n), 就要实际操作来评判。
public static void p1() {
int N = 1000;
int a = 1;
for (int i = 0; i < N; i++) {
a = 2 + 3;
a = 3 * 5;
}
}
public static void p2() {
int N = 1000;
int a = 1;
for (int i = 0; i < N; i++) {
a = 2 | 3;
a = 3 & 5;
}
}
空间复杂度
什么是空间复杂度?
这个流程需要你额外多少空间才能支持你计算?
如果只有有限集的数量 那就是O(1)
public class Test02 {
public static void main(String[] args) {
int[] arr = {1,2,4,5,6,1,3,5};
//i和j都是额外开辟的空间
for (int i = 0; i < arr.length; i++) {
int minIndex = i; //临时开辟的空间 重复开辟又销毁
for (int j = i+1; j < arr.length; j++) {
minIndex = arr[j]<arr[minIndex]?j:minIndex;
}
//两个索引的元素交换
swap(arr,i,minIndex);
}
}
}
异或运算(^)
相同为0,不同为1
0^1 = 1
0^0 = 0
1^0 = 1
1^1 = 0
异或运算也可以理解为无进位相加
什么是无进位相加?
10110^00111 对应为相加满2进十,且不仅为 也就是留下0
异或运算的规则
0 ^ N = N N^N=0
满足交换律与结合律
交换两个变量的值,我们可以怎么写?
可以这样做的前提是a和b是独立的区域(指向的内存不同)
public class Test03 {
public static void main(String[] args) {
int a = 17;
int b = 23;
a = a ^ b;
b = a ^ b;
a = a ^ b;
System.out.println("结果a为"+a+"b为"+b);
}
}
为什么呢?
假设 a = 甲,b = 乙
a = a ^ b 甲 ^ 乙
b = a ^ b 甲 ^ 乙 ^ 乙 =》 甲 ^ 0 => 甲
a = a ^ b 甲 ^ 乙 ^ 甲 =》 乙 ^ 0 => 乙
案例1
题目
在一个数组中,一个数出现了奇数次,其他出现了偶数次,怎么找到这个出现奇数次的数?
代码
public class Test04 {
public static void main(String[] args) {
int[] arr = {1,2,2,3,3,4,4};
int eor = 0;
for (int i = 0; i < arr.length; i++) {
eor = eor ^ arr[i];
}
System.out.println(eor);
}
}
为什么可以这样写?
因为根据交换律和结合律
为什么符合交换律和结合律?
用无进位相交就很好解决可以看出偶数次为0 奇数次为1,因为相同为0,不同为1.
案例2
题目
两个数出现了奇数次,其他出现偶数。
public class Test05 {
public static void main(String[] args) {
int[] arr = {1,2,3,3,4,4,5,5};
int eor = 0;
for (int i = 0; i < arr.length; i++) {
eor ^= arr[i];
}
//eor必然有一个位置上是1
int rightOne = eor & (~eor +1);// 取出最右的1
//~eor是取反 & 1&1才是1 其他都是0
int onlyOne = 0;
for (int i : arr) {
if ((i&rightOne)==1){
onlyOne ^= i;
}
}
System.out.println(onlyOne+"和"+ (eor^onlyOne));
}
}
异或运算的弊端
在使用异或运算来交换两个变量的值的时候,必须确保两个变量是相互独立的,分别有自己的地址。
- 当两个变量指向同一片存储区域时,即a = b,使用异或交换会导致两个变量的值都变为0。这是因为连续的异或操作会导致变量值被重置为0。
- 在数组操作中,如果尝试交换位于相同索引位置的元素,由于异或运算的特性,这些元素的值也会变为0。这是因为对一个数进行三次自异或操作的结果是0。
- 在某些编程语言中,连续赋值语句的执行顺序可能导致意外的结果。例如,在C#中,连续的异或赋值操作需要特别注意,以避免出现意外的结果。
- 在进行选择排序等算法时,如果错误地使用了异或交换,可能会导致排序结果错误,因为错误的交换操作会改变数据的顺序。
插入排序
往前看如果比前面小就交换,一直到不用交换或者前面没有数
选择排序和冒泡排的时间复杂度不受数据的影响。
插入排序会被数据所影响
虽然插入,冒泡和选择都是O(n2),但是最优情况下 插入是O(n) (数据已经排好的情况下)
选择排序代码
public class Test08 {
public static void main(String[] args) {
int[] arr = {1,1,1,2,3,2,5,7,2,1};
for (int i = 0; i < arr.length; i++) {
int min = i;
for (int j = i+1; j < arr.length; j++) {
//每次找最小的
if (arr[min]>arr[j]){
min = j;
}
}
int temp = arr[i];
arr[i] = arr[min];
arr[min] = temp;
}
for (int i = 0; i < arr.length; i++) {
System.out.println(arr[i]);
}
}
}
冒泡排序
冒泡排序是一种简单的排序算法,它重复地遍历要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。重复进行直到没有再需要交换的元素,这意味着数列已经排序完成
public class Test09 {
public static void main(String[] args) {
int[] arr = {1, 1, 1, 2, 3, 2, 5, 7, 2, 1};
for (int i = 0; i < arr.length; i++) {
for (int j = 0 ; j < arr.length - i - 1; j++) {
if (arr[j] > arr[j+1]) {
int temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
}
}
}
for (int i = 0; i < arr.length; i++) {
System.out.println(arr[i]);
}
}
}
插入排序
public class Test06 {
public static void main(String[] args) {
int[] arr = {1,2,3,4,5,1,2,3};
for (int i = 1; i < arr.length; i++) {
for (int j = i-1; j>=0&&arr[j]>arr[j+1]; j--) {
//交换两个的值
swap();
}
}
}
}
二分查找
在一个有序数组中找到指定的数,每次都找中间值O(log2N)
二分查找代码
public class Test10 {
public static void main(String[] args) {
int[] arr = {1, 1, 1, 2, 2, 3, 4, 5, 6};
int start = 0;
int end = arr.length - 1;
int findNum = 3;
while (start <= end) {
int mid = (start + end) / 2;
if (arr[mid] > findNum) {
end = mid - 1;
} else if (arr[mid] == findNum) {
System.out.println("找到了" + arr[mid]);
return;
} else {
start = mid + 1;
}
}
System.out.println("没找到");
}
}
找这个值的最左边的值
public class Test11 {
public static void main(String[] args) {
int[] arr = {1, 1, 1, 2, 2, 3, 4, 5, 6,6};
int start = 0;
int end = arr.length - 1;
int findNum = 3;
int temp = -1;
while (start <= end) {
int mid = (start + end) / 2;
if (arr[mid] > findNum) {
end = mid - 1;
} else if (arr[mid] == findNum) {
temp = mid;
end = mid-1;
} else {
start = mid + 1;
}
}
System.out.println(temp);
}
}
局部最小
在一个arr中,里面的元素无序,相邻的数一定不相等。
1.先判断0位置是不是局限最小
2.再判断n-1位置是不是一个局部最小
3.取中间判断是否是局部最小,然后继续二分,为啥一定有最小
因为:
当0和n-1都不是局部最小,则中间一定有局部最小,同理
public class Test12 {
public static void main(String[] args) {
int[] arr = {2, 1, 0, 5, 7, 8};
int start = 0;
int end = arr.length - 1;
int result = -1;
if (arr.length == 1) {
return;
}
if (arr[start] < arr[start + 1] || arr[end] < arr[end - 1]) {
result = arr[start];
System.out.println("开头或结尾" + result);
return;
}
while (start <= end) {
int mid = start + (end - start) / 2;
if (arr[mid] > arr[mid - 1]) {
//往左下坡
end = mid - 1;
} else if (arr[mid] < arr[mid + 1] && arr[mid] < arr[mid - 1]) {
result = arr[mid];
break;
} else{
//往右下坡
start = mid + 1;
}
}
System.out.println(result);
}
}