给大家的福利
零基础入门
对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。
同时每个成长路线对应的板块都有配套的视频提供:
因篇幅有限,仅展示部分资料
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
2.8 接下来的内容
三.线性代数回顾
3.1 矩阵和向量
3.2 加法和标量乘法
3.3 矩阵向量乘法
3.4 矩阵乘法
3.5 矩阵乘法的性质
3.6 逆,转置
四.多变量线性回归
4.1 多维特征
4.2 多变量梯度下降
4.3 梯度下降法实践—特征缩放
4.4 梯度下降法实践—学习率
4.5 特征和多项式回归
4.6 正规方程
4.7 正规方程及不可逆性
五.Octave 教程
5.1 基本操作
5.2 移动数据
5.3 计算数据
5.4 绘图数据
5.5 控制语句:for,while,if语句
5.6 向量化
5.7 工作和提交的编程练习
六.逻辑回归
6.1 分类问题
6.2 假说表示
6.3 判定边界
6.4 代价函数
6.5 简化的成本函数和梯度下降
6.6 高级优化
6.7 多类别分类:一对多
七.正则化
7.1 过拟合的问题
7.2 代价函数
7.3 正则化线性回归
7.4 正则化的逻辑回归模型
八.神经网络:表述
8.1 非线性假设
8.2 神经元和大脑
8.3 模型表示1
8.4 模型表示2
8.5 特征和直观理解1
8.6 特征和直观理解2
8.7 多类分类
九.神经网络的学习
9.1 代价函数
9.2 反向传播算法
9.3 反向传播算法的直观理解
9.4 实现注意:展开函数
9.5 梯度检验
9.6 随机初始化
9.7 综合起来
9.8 自主驾驶
十.应用机器学习的建议
10.1 决定下一步要做什么
10.2 评估下一个阶段
10.3 模型选择和交叉验证集
10.4 诊断偏差和方差
10.5 归一化和偏差/方差
10.6 学习曲线
10.7 决定下一步做什么
十一.机器学习系统的设计
11.1 首先要做什么
11.2 误差分析
11.3 类偏斜的误差度量
11.4 查全率和查准率之间的权衡
11.5 机器学习的数据
十二.支持内向机
12.1 优化目标
12.2 大边界的直观理解
12.3 数学背后的大边界分类
12.4 核函数1
12.5 核函数2
12.6 使用支持向量机
十三.聚类
13.1 无监督学习
13.2 K-均值算法
13.3 优化目标
13.4 随机初始化
13.5 选择聚类数
十四.降维
14.1 动机一:数据压缩
14.2 动机二:数据可视化
14.3 主成分分析问题
14.4 主成分分析算法
14.5 选择主成分的数量
14.6 重建的压缩表示
14.7 主成分分析法的应用建议
十五.异常检测
15.1 问题的动机
15.2 高斯分布
15.3 算法
15.4 开发和评价一个异常检测系统
15.5 异常检测与监督学习对比
15.6 选择特征
15.7 多元高斯分布
15.8 使用多元高斯分布(可选)
十六.推荐系统
16.1 问题形式化
16.2 基于内容的推荐系统
16.3 协同过滤
16.4 协同过滤算法
16.5 向量化:低秩矩阵分解
16.6 推行工作项的细节:均值归一化
十七.大规模机器学习
17.1 大型数据集的学习
17.2 随机梯度下降法
17.3 小批量梯度下降
17.4 随机梯度下降收敛
17.5 在线学习
17.6 映射化简和数据并行
十八,应用实例:图片文字识别
学习路线:
这个方向初期比较容易入门一些,掌握一些基本技术,拿起各种现成的工具就可以开黑了。不过,要想从脚本小子变成黑客大神,这个方向越往后,需要学习和掌握的东西就会越来越多以下是网络渗透需要学习的内容:
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!