2024年网络安全最新图数据库JanusGraph入门(一)JanusGraph初识,网络安全程序员月薪20k的涨薪秘籍

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新网络安全全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上网络安全知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以点击这里获取

最近开始学习图数据库了,图数据库JanusGraph(janus读音类:J+nes, jay 而不是je-nes),JanusGraph是一个分布式图数据库引擎,具有以下特性:

  • 支持百亿级别的顶点&边的存储及查询
  • 本身不负责存储,而是借助其他存储和索引组件配合达到图形数据的查询
  • 支持事务,可并发执行复杂图操作
    在这里插入图片描述

JanusGraph是一个可扩展的图数据库,可以把包含数千亿个顶点和边的图存储在多机集群上。它支持事务,支持数千用户实时、并发访问存储在其中的图。(JanusGraph is a scalable graph database optimized for storing and querying graphs containing hundreds of billions of vertices and edges distributed across a multi-machine cluster. JanusGraph is a transactional database that can support thousands of concurrent users executing complex graph traversals in real time.)
在这里插入图片描述

一、 图数据库

图数据库是什么?

💬图数据库就是用来存储图结构的数据库。图数据库也是属于NoSQL一种。

-NoSQL数据库大致可以分为以下几类:

  • 键值对(key-value)数据库(遵循“键——值”模型,是最简单的数据库管理系统):如Memcache、Redis、Berkeley DB、SQLite…
  • 列簇式数据库(按照列(由“键——值”对组成的列表)在数据文件中记录数据,以获得更好的请求及遍历效率。一行中的列数允许动态变化,且列的数目可达数百万,每条记录的关键码不同,支持多值列。):如HBase、hive、sybase IQ/SAPIQ、GreenPlum…
  • 文档型数据库(无固定结构,不同的记录允许有不同的列数和列类型。列允许包含多值,记录允许嵌套):如Mongodb、Couchbase、Amazon DynamoDB、CouchDB、MarkLogic…
  • 图数据库(以“点——边”组成的网络(图结构)来存储数据):如Neo4j、JanusGraph、OrientDB、Titan、Virtuoso、ArangoDB …
  • 搜索引擎(存储的目的是为了搜索,主要功能是搜索):如Elasticsearch、Solr、Splunk、MarkLogic、Sphinx…
  • 对象数据库(受面向对象编程语言的启发,把数据定义为对象并存储在数据库中,包括对象之问的关系,如继承):如Caché、db4o、Versant Object Database、ObjcctStore、Matisse …
  • 时序数据库(存储时间序列数据,每条记录都带有时间戳。如存储从感应器采集到的数据):如InfluxDB、RRDtool、Graphite、OpcnTSDB、Kdb+ …
图数据库的作用?

💬图数据库主要处理的是拓扑关系的图,善于处理大量、复杂、互联、多变的网状海量数据,其效率远远高于传统的关系型数据库。就比如下面的图:
在这里插入图片描述

图数据库应用背景

💬图数据库所提供的关联分析能力是金融反欺诈、威胁情报、黑产打击和案件溯源等业务所需要的核心能力。图数据库的需求非常多,例如金融安全业务希望使用图数据库进行金融反欺诈关联分析、威胁情报业务希望通过图数据库进行黑产研究和情报分析、还有社交关系分析、知识图谱等需求场景。

二、JanusGraph简介

JanusGraph简介

💬JanusGraph是一个图形数据库引擎。其本身专注于紧凑图序列化、丰富图数据建模、高效的查询执行。另外,JanusGraph利用Hadoop进行图分析和批处理图处理。JanusGraph为数据持久性、数据索引、客户端访问实现了强大的模块化接口。JanusGraph的模块化体系结构使其可以与多种存储、索引、客户端技术进行互操作。它还简化了扩展JanusGraph以支持新的过程。

JanusGraph可以适配多种数据库和索引。JanusGraph默认支持以下的适配,但是JanusGraph的模块化架构使得也支持第三方的适配器。
数据库

  • Apache Cassandra
  • Apache HBase
  • Oracle Berkeley DB Java版

索引

  • Elasticsearch
  • Apache Solr
  • Apache Lucene
JanusGraph的发展历史

💬JanusGraph是2016年12月27日从Titan fork出来的一个分支,之后TiTan的开发团队在2017年陆续发了0.1.0rc1、0.1.0rc2、0.1.1、0.2.0等四个版本,最新的版本是2017年10月12日。 titan是从2012年开始开发,到2016年停止维护的一个分布式图数据库。最初在2012年启动titan项目的公司是Aurelius,2015年此公司被 DataStax(DataStax是开发apache Cassandra 的公司)收购,DataStax公司吸收了TiTan的图存储能力,形成了自己的商业产品DataStax Enterprise Graph。

TiTan开发者们希望把TitTan放到Apache Software Foundation下,不过,DataStax不愿意这样做(可能考虑到要保护自己的商业产品DataStax Enterprise Graph的技术优势吧,其实这点优势是从Titan来的),而且自从2015年9月DataStax收购了Titan的母公司后,TiTan一直处于停滞状态(应该是DataStax收购之后,忙于推出自己的商业产品DataStax Enterprise Graph,忙于整合Titan进自己的商业产品吧,可是Titan本身没有得到发展)。鉴于此,2016年6月,TiTan的开发者们fork了一个TiTan的分支(因为Titan已经属于DataStax了,所以他们必须另外弄一个商标),重命名为JanusGraph,并将其置于Linux Software Foundation下。

2017年4月6日发布了第一个版本0.1.0-rc1,目前最新版本是2017年10月12日发布的0.2.0版。

JanusGraph项目启动的初衷是“通过为其增加新功能、改善性能和扩展性、增加后端存储系统来增强分布式图系统的功能,从而振兴分布式图系统的开发”,JanusGraph从Apahce TinkerPop中吸收了对属性图模型(Property Graph Model)的支持和对属性图模型进行遍历的Gremlin遍历语言。(“reinvigorate development of the distributed graph system to add new functionality, improve performance and scalability, and maintain a variety of storage backends,JanusGraph incorporates support for the property graph model with the open source graph computing framework Apache TinkerPop and its Gremlin graph traversal language”.)

JanusGraph的架构图

💬它的整体架构,大致分为三部分:

  • 图计算框架(TinkerPop)
  • 数据存储(Cassandra,HBase,BerkeleyDB)
  • 索引存储(Elasticsearch,Solr,Lucene)

JanusGraph从其框架上来说,是起到一个桥梁的作用。将各种开源的软件连接到一起,形成一个大型图数据库
在这里插入图片描述

二、 JanusGraph的优势及特点

JanusGraph的优势

💬来源General JanusGraph Benefits

  • Support for very large graphs. JanusGraph graphs scale with the
    number of machines in the cluster.
  • Support for very many concurrent transactions and operational graph
    processing. JanusGraph’s transactional capacity scales with the
    number of machines in the cluster and answers complex traversal
    queries on huge graphs in milliseconds.
  • Support for global graph analytics and batch graph processing through
    the Hadoop framework.
  • Support for geo, numeric range, and full text search for vertices and
    edges on very large graphs.
  • Native support for the popular property graph data model exposed by
    Apache TinkerPop.
  • Native support for the graph traversal language Gremlin.
  • Numerous graph-level configurations provide knobs for tuning
    performance.
  • Vertex-centric indices provide vertex-level querying to alleviate
    issues with the infamous super node problem.
  • Provides an optimized disk representation to allow for efficient use
    of storage and speed of access.
  • Open source under the liberal Apache 2 license.

百度翻译版:

  • 支持非常大的图形。JanusGraph图随集群中的机器数量而扩展。
  • 支持很多并发事务和操作图处理。JanusGraph的事务处理能力随着集群中机器的数量而扩展,并在毫秒内回答大型图上的复杂遍历查询。
  • 通过Hadoop框架支持全局图分析和批处理图处理。
  • 支持对超大图形上的顶点和边进行地理、数字范围和全文搜索。
  • 对Apache TinkerPop公开的流行属性图数据模型的本机支持。
  • 对图遍历语言Gremlin 的本机支持。
  • 许多图形级配置提供了用于调整性能的旋钮。
  • 以顶点为中心的索引提供顶点级查询,以缓解臭名昭著的超级节点问题。
  • 提供优化的磁盘表示形式,以便高效使用存储和加快访问速度。
  • 开放源代码,使用Apache2许可证。
JanusGraph的特点

学习路线:

这个方向初期比较容易入门一些,掌握一些基本技术,拿起各种现成的工具就可以开黑了。不过,要想从脚本小子变成黑客大神,这个方向越往后,需要学习和掌握的东西就会越来越多以下是网络渗透需要学习的内容:
在这里插入图片描述

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以点击这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

统化资料的朋友,可以点击这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值