- 博客(3)
- 收藏
- 关注
原创 day3-Datawhale X 魔塔AI夏令营学习笔记
在部署过程中,需要考虑模型的大小和计算资源需求,可能需要对模型进行压缩和优化,以确保能够在 LoRa 设备上高效运行。比如对于图像数据,可能需要将其尺寸统一调整为模型能够接受的标准大小,并进行灰度化或者标准化色彩空间的处理,以确保数据的一致性和有效性,为后续的模型训练提供高质量的输入。例如,对于模型执行节点,你可能需要设置生成图像的分辨率、采样步数、提示词的权重等。3. 如果需要将生成的图像用于其他应用程序或分享给他人,可以选择导出选项,将图像导出为常见的图像格式,如 JPEG、PNG 等。
2024-08-15 09:50:04 427
原创 day2-Datawhale X 魔塔AI夏令营学习笔记
通过对代码结构和算法的分析,它可以指出可能存在的性能瓶颈和潜在的错误。总之,Prompt 工程和微调为人工智能的应用提供了强大的工具和方法,使我们能够更好地利用现有的模型资源,实现更精准、个性化的服务和解决方案。在数据分析和机器学习领域,Baseline(基线)通常是指一个简单的、基本的模型或方法,作为与更复杂的模型进行比较和评估的基准。例如,在图像识别领域,如果要将一个通用的图像识别模型应用于医疗影像诊断,就可以使用医疗影像数据集对模型进行微调,以使其能够更准确地识别和诊断医疗相关的图像特征。
2024-08-12 23:07:07 272
原创 Day1-Datawhale X 魔塔AI夏令营学习笔记
其内部将快手自研的中文 llm 与融合 clip 的图文特征作为文生图的文本理解模块,这得益于其拥有数十亿来自开源社区、快手内部构建和自研 ai 技术合成的图文训练数据,覆盖了常见的千万级中文实体概念。需要注意的是,具体的微调方法可能会因实际需求和情况而有所不同,而且快手“可图”模型的相关信息和技术可能会不断更新和改进,建议参考快手的官方文档、技术说明或相关的开发者社区以获取最新和详细的微调指南。• 丰富的细节刻画:通过优化扩散模型的加噪去噪理论,实现了对高质量、细节丰富的图像生成的训练和推理的精准适配。
2024-08-10 23:58:46 702
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人