class MyObserver : LifecycleObserver {
@OnLifecycleEvent(Lifecycle.Event.ON_RESUME)
fun connectListener() {
…
}
@OnLifecycleEvent(Lifecycle.Event.ON_PAUSE)
fun disconnectListener() {
…
}
}
如果我们的组件需要强绑定声明周期,那么只需要借助 Lifecycle 去监听生命周期的状态和事件即可,再也不用覆写各种回调方法了。下面将要讲到的 LiveData 和 ViewModel 都是 Lifecycle-Aware Components,它们都用到了 Lifecycle。
Android 生命周期管理不当带来的最大问题就是内存泄露,举一个我们经常遇到的场景:一个异步任务(比如网络请求)持有了 UI 元素的引用,只要任务没有执行完,所有与这个 UI 元素有强引用关系的元素都没法被 GC,如果这样的场景多发生几次,很可能会引起 OOM。
为了异步对象引用的问题,最早我们使用 AsyncTask,任务执行在 worker thread,执行结果在主线程上发起回调。AsyncTask 的致命缺点是不支持流式数据(stream),而且回调嵌套太深(callback hell),与软件质量衡量指标之一的 maintainable 背道而驰,不好用自然就会慢慢被淘汰。
后来我们开始使用 RxJava,响应式编程,声明式写法,再借助 retrolambda 这种 backport,即使当年 Android 只支持到 JDK7,我们依然可以利用各种 operator 写出非常简洁的代码,“filter map 我闭~着眼”。RxJava 不但完美解决了线程调度的问题,还为我们提供了 OO 之外的抽象——作用在流上的 lambda,基于函数的抽象。但是,即便完美如斯,生命周期的问题依然无法回避,因为 Java 天生的局限性,一个 lambda 无论伪造地再像高阶函数,它本质上还是一个匿名内部类,这个匿名内部类依然持有对 outer class 实例的引用。于是我们必须通过CompositeDisposable来管理订阅关系,发起异步操作时记录订阅,离开页面时取消订阅,仍然需要覆写 onDestory 或者 onPause 。
如果我们以 Repository 层为界把架构蓝图分为上下两部分的话,上面的部分是数据展示,下面的部分是数据获取,数据获取部分因为要请求 Remote 数据,必然会依赖到线程调度,而数据展示必然运行在 UI 线程,与生命周期强相关,这个时候就需要 LiveData 登场了。
LiveData
LiveData 也是一个观察者模型,但是它是一个与 Lifecycle 绑定了的 Subject,也就是说,只有当 UI 组件处于 ACTIVE 状态时,它的 Observer 才能收到消息,否则会自动切断订阅关系,不用再像 RxJava 那样通过CompositeDisposable来手动处理。
LiveData 的数据类似 EventBus 的 sticky event,不会被消费掉,只要有数据,它的 observer 就会收到通知。如果我们要把 LiveData 用作事件总线,还需要做一些定制,Github 上搜SingleLiveEvent可以找到源码实现。
我们没法直接修改 LiveData 的 value,因为它是不可变的(immutable),可变(mutable)版本是MutableLiveData,通过调用 setValue(主线程)或 postValue(非主线程)可以修改它的 value。如果我们对外暴露一个 LiveData,但是不希望外部可以改变它的值,可以用如下技巧实现:
private val _waveCode = MutableLiveData()
val waveCode: LiveData = _waveCode
内部用MutableLiveData,可以修改值,对外暴露成LiveData类型,只能获取值,不能修改值。
LiveData 有一个实现了中介者模式的子类 ——MediatorLiveData,它可以把多个 LiveData 整合成一个,只要任何一个 LiveData 有数据变化,它的观察者就会收到消息:
val liveData1 = …
val liveData2 = …
val liveDataMerger = MediatorLiveData<>();
liveDataMerger.addSource(liveData1) { value -> liveDataMerger.setValue(value))
liveDataMerger.addSource(liveData2) { value -> liveDataMerger.setValue(value))
综上,我们汇总一下 LiveData 的使用场景:
LiveData - immutable 版本
MutableLiveData - mutable 版本
MediatorLiveData - 可汇总多个数据源
SingleLiveEvent - 事件总线
LiveData 只存储最新的数据,虽然用法类似 RxJava2 的 Flowable,但是它不支持背压(backpressure),所以不是一个流(stream),利用 LiveDataReactiveStreams 我们可以实现 Flowable 和 LiveData 的互换。
如果把异步获取到的数据封装成 Flowable,通过toLiveData方法转换成 LiveData,既利用了 RxJava 的线程模型,还消除了 Flowable 与 UI Controller 生命周期的耦合关系,借助 Data Binding 再把 LiveData 绑定到 xml UI 元素上,数据驱动 UI,妥妥的响应式。于是一幅如下模样的数据流向图就被勾勒了出来:
图中右上角的 Local Data 是 AAC 提供的另一个强大武器 —— ORM 框架 Room。
Room
数据库作为数据持久层,其重要性不言而喻,当设备处于离线状态时,数据库可用于缓存数据;当多个 App 需要共享数据时,数据库可以作为数据源,但是基于原生 API 徒手写 CRUD 实在是痛苦,虽然 Github 上出现了不少 ORM 框架,但是它们的易用性也不敢让人恭维,直到 Room 出来之后,Android 程序员终于可以像 mybatis 那样轻松地操纵数据库了。
Room 是 SQLite 之上的应用抽象层,而 SQLite 是一个位于 Android Framework 层的内存型数据库。虽然 Realm 也是一个优秀的数据库,但是它并没有内置于 Android 系统,所会增大 apk 的体积,使用 Room 则没有这方面烦恼。
Room 的结构抽象得非常简单,数据对象(表名 + 字段)用**@Entity注解来定义,数据访问用@Dao来注解,db 本身则用@Database来定义,如果要支持复杂类型,可以定义@TypeConverters**,然后在编译阶段,apt 会根据这些注解生成代码。
Entity 是一个数据实体,表示一条记录,它的用法如下:
@Entity(tableName = “actors”)
data class Actor(
@PrimaryKey @ColumnInfo(name = “id”)
val actorId: String,
val name: String,
val birthday: Date?,
val pictureUrl: String
)
Actor是一个用**@Entity注解的 data class,它会生成一个名字是actors的表,注意到有一个字段是@Date**?,但是 SQLite 本身不支持这种复杂类型(complex type),所以我们还需要写一个可以转换成基础类型的转换器:
class Converters {
@TypeConverter
fun timestampToDate(value: Long?) = value?.let { Date(it) }
@TypeConverter
fun dateToTimestamp(date: Date?) = date?.time
}
转换器通过**@TypeConverters可作用于 class、field、method、parameter,分别代表不同的作用域。比如作用在@Database类的上,那么它的作用域就是 db 中出现的所有@Dao和@Entity**。
@Database(entities = [Actor::class], version = 1, exportSchema = false)
@TypeConverters(Converters::class)
abstract class AppDatabase : RoomDatabase() {
abstract fun actorDao(): ActorDao
}
代码出现的ActorDao定义了 CRUD 操作。用**@Dao**来注解,它既可以是一个接口,也可以是抽象类,用法如下:
@Dao
interface ActorDao {
@Query(“SELECT * FROM actors WHERE id = :actorId”)
fun getActor(actorId: String): LiveData
@Insert(onConflict = OnConflictStrategy.REPLACE)
fun insertAll(actors: List)
}
@Query中的 SQL 语句可以直接引用方法参数,而且它的返回值可以是LiveData类型,也支持Flowable类型,也就是说,Room 原生支持响应式,这是对数据驱动最有利的支持,也是 Room 区别于其他 ORM 框架的显著特征。
至此,我们可以确定,无论数据来自 Remote 还是来自本地 DB,架构蓝图中的 Repository 对 ViewModel 提供的数据可以永远是 LiveData 类型,接下来我们看一下 ViewModel 的妙用。
ViewModel
ViewModel 是一个多面手,因为它的生命周期比较长,可以跨越因为配置变动(configuration changed,比如屏幕翻转)引起的 Activity 重建,因此 ViewModel 不能持有对 Activity / Fragment 的引用。
如果 ViewModel 中要用到 context 怎么办呢?没关系,框架提供了一个 ViewModel 的子类AndroidViewModel,它在构造时需要传入Application实例。
既然 ViewModel 与 UI Controller 无关,当然可以用作 MVP 的 Presenter 层提供 LiveData 给 View 层,因为 LiveData 绑定了 Lifecycle,所以不存在内存泄露的问题。除此之外,ViewModel 也可以用做 MVVM 模式的 VM 层,利用 Data Binding 直接把 ViewModel 的 LiveData 属性绑定到 xml 元素上,xml 中声明式的写法避免了很多样板代码,数据驱动 UI 的最后一步,我们只需要关注数据的变化即可,UI 的状态会自动发生变化。
ViewModel 配合 Data Binding 的用法与 React 非常相似,ViewModel 实例相当于state,xml 文件就好比render函数,只要state数据发生变化,render就会重新渲染 UI,但是 data binding 还有更强大的一点,它支持双向绑定。举个例子,UI 需要展示一个评论框,允许展示评论,也允许用户修改,那么我们可以直接把EditText双向绑定到一个 LiveData 之上,只要用户有输入,我们就可以收到通知,完全不需要通过 Kotlin/Java 来操控 UI:
<TextInputEditText
android:text=“@={viewModel.commentText}” />
注意,如果要在 xml 中使用 LiveData,需要把 lifecycle owner 赋给 binding:
val binding: MainBinding = DataBindingUtil.setContentView(this, R.layout.main)
// Specify the current activity as the lifecycle owner.
binding.setLifecycleOwner(this)
因为 ViewModel 拿到的数据是 Repository 给的,可能不适用于 UI 元素,所以 ViewModel 还承担了数据适配的工作,有时候我们需要汇总 repository 的多个返回值一次性给到 UI,那么就可以使用 LiveData 的“操作符”Transformations.switchMap,用法可以认为等同于 Rx 的flatMap;如果只想对 LiveData 的 value 做一些映射,可以使用Transformations.map,目前 Transformations 只有这两个操作符,因为不管 Kotlin 还是 Java8,都提供了很多声明式的操作符,对流的支持都比较友好,而LiveData本身不是一个流,所以这两个操作符足矣。
除了数据适配之外,ViewModel 还有一个强大的用法 —— Fragment 之间共享数据,这样 ViewModel 又扮演了 FLUX 模式中的 store 这一角色,是多个页面(fragment)之间唯一的数据出口。
ViewModel 的用法也非常简单,通过ViewModelProviders.of可以获取 ViewModel 实例:
val viewModel = ViewModelProviders.of(requireActivity(), factory) .get(ActorViewModel::class.java)
一通操作猛如虎之后,UI controller 层变得薄如蝉翼,它只做了一件事情,把数据从左手(ViewModel)倒给了右手(使用了 Data Binding 的 xml)。
如果把 ViewModel 作为 SSOC(唯一真相源),多个 Fragment 之间共享数据,再利用 SingleLiveEvent 做总线,一个 Activity 配多个 Fragment 的写法就避免了 Activity 之间通过 Intent 传递数据的繁琐。但是 Fragment 的堆栈管理一直是一个让人头疼的问题,AAC 的 Navigation 不但完美解决了这个问题,而且还提供可视化的路由,只需拖拽一下就能生成类型安全的跳转逻辑。
Navigation
Navigation 用一个图(graph)来表示页面间的路由关系,图的节点(node)表示页面,边(edge)表示跳转关系。
页面与页面之间的连线叫 action,它可以配置进离场动画(Animations),也可以配置出栈行为(Pop Behavior),还支持 Single Top 的启动选项(Launch Options)。进离场动画和启动选项很好理解,出栈行为是一个比较强大的功能,action 箭头所指的方向表示目标页面入栈,箭头的反方向则表示目标页面出栈,而出栈的行为在 Navigation 编辑器中完全可控,我们可以指定要出栈到哪个页面,甚至可以指定目标页面是否也需要出栈:
针对页面节点,还可以定义它要接收的参数(arguments),支持默认值,从此 Fragment 之间的参数传递变得非常直观,非常安全。
看一下具体用法,首先在跳转发起页面,通过 apt 生成的跳转函数传入参数:
val actorId = getSelectedActorId()
val direction = ActorListFragmentDirections.showDetail(actorId)
findNavController().navigate(direction)
然后利用目标页面生成的*Args获取参数:
private val args: ActorDetailFragmentArgs by navArgs()
这里的 navArgs 是一个扩展函数,利用了 Kotlin 的 ReadWriteProperty。
几行代码就搞定了页面之间的跳转,而且还是可视化!从没有想过 Android 的页面跳转竟会变得如何简单,但是 Navigation 的方案并不是原创,iOS 的 Storyboard 很早就支持拖拽生成路由。当年 Android 推出 ConstraintLayout 之时,我们都认为是参考了 Storyboard 的页面拖拽,现在再配上 Navigation,从页面到跳转,一个完整的拖拽链路就形成了。平台虽然有差异化,但是使用场景一致的前提下,解决方案也就殊途同归了。
了解完了与生命周期有关的组件,接下来我们来看细节。
Paging
UI 没有办法一次性展示所有的数据,端上的系统资源(电量、内存)也有限制,不可能把所有数据都加载到内存中;而且大批量请求数据不但浪费带宽,在某些网络情况(弱网、慢网)下还会导致请求失败,所以分页是很多情景下的刚需。Github 上有各式各样的解决方案,这一次,Google 直接推出了官方的分页组件——Paging。
Paging 将分页逻辑拆解为三部分:
-
数据源 DataSource
-
数据块 PagedList
-
数据展示 PagedListAdapter
DataSource 的数据来源于后端服务或者本地数据库,并且用三个子类来表示三种分页模式:
PageKeyedDataSource - 单页数据以 page key 为标识,例如当前页的 Response 中包含了下一页的 url,这个 url 就是 page key。
ItemKeyedDataSource - 单页数据以 item key 为标识,比如下一页的请求要带当前页最后一个 item 的 id,这个 itemId 就是 item key。
PositionalDataSource - 单页数据以位置为标识,这种模式比较常见,Room 只支持这一种,因为数据库查询以 OFFSET 和 LIMIT 做分页。
PageKeyedDataSource 和 ItemKeyedDataSource 适用于内存型数据,比如直接从后端获取后需要展示的数据。PositionalDataSource 适用于本地 Room 数据或者使用 Room 做缓存的 Cache 数据。
数据流向的关系图如下所示:
LivePagedListBuilder利用DataSource.Factory和PageList.Config创建 LiveData,UI Controller 拿到数据之后交给PagedListAdapter展示到 RecyclerView。
上图表达了数据的流向,如果从 UI 层往回看,页面展示的数据存储在 PagedList 中,PagedList 只是 DataSource 的数据块(chunk),当 PagedList 需要更多数据时,DataSource 就会给更多,当 DataSource 一无所有时便会触发BoundaryCallback获取更多数据,直到数据全部展示完毕。
LivePagedListBuilder 会将PagedList包装成**LiveData**给到下游,它在整个数据交互链路中的位置
关于面试的充分准备
一些基础知识和理论肯定是要背的,要理解的背,用自己的语言总结一下背下来。
虽然 Android 没有前几年火热了,已经过去了会四大组件就能找到高薪职位的时代了。这只能说明 Android 中级以下的岗位饱和了,现在高级工程师还是比较缺少的,我能明显感觉到国庆后多了很多高级职位,所以努力让自己成为高级工程师才是最重要的。
好了,希望对大家有所帮助。
接下来是整理的一些Android学习资料,有兴趣的朋友们可以关注下我免费领取方式。
①Android开发核心知识点笔记
②对标“阿里 P7” 40W+年薪企业资深架构师成长学习路线图
③面试精品集锦汇总
④全套体系化高级架构视频
**Android精讲视频领取学习后更加是如虎添翼!**进军BATJ大厂等(备战)!现在都说互联网寒冬,其实无非就是你上错了车,且穿的少(技能),要是你上对车,自身技术能力够强,公司换掉的代价大,怎么可能会被裁掉,都是淘汰末端的业务Curd而已!现如今市场上初级程序员泛滥,这套教程针对Android开发工程师1-6年的人员、正处于瓶颈期,想要年后突破自己涨薪的,进阶Android中高级、架构师对你更是如鱼得水!
《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》,点击传送门,即可获取!
技术能力够强,公司换掉的代价大,怎么可能会被裁掉,都是淘汰末端的业务Curd而已!现如今市场上初级程序员泛滥,这套教程针对Android开发工程师1-6年的人员、正处于瓶颈期,想要年后突破自己涨薪的,进阶Android中高级、架构师对你更是如鱼得水!
[外链图片转存中…(img-qoL7Wf44-1714771362594)]
《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》,点击传送门,即可获取!