//返回双亲结点
public TreeNode parent(TreeNode element){
return (root == null|| root == element) ? null : parent(root, element);
}
public TreeNode parent(TreeNode subTree,TreeNode element){
if(subTree == null)
return null;
if(subTree.leftChild == element || subTree.rightChild == element)
//返回父结点地址
return subTree;
TreeNode p;
// 先在左子树中找,如果左子树中没有找到,才到右子树去找
if((p = parent(subTree.leftChild, element)) != null)
//递归在左子树中搜索
return p;
else
//递归在右子树中搜索
return parent(subTree.rightChild, element);
}
public TreeNode getLeftChildNode(TreeNode element){
return (element != null) ? element.leftChild : null;
}
public TreeNode getRightChildNode(TreeNode element){
return (element != null) ? element.rightChild : null;
}
public TreeNode getRoot(){
return root;
}
//在释放某个结点时,该结点的左右子树都已经释放,
//所以应该采用后续遍历,当访问某个结点时将该结点的存储空间释放
public void destroy(TreeNode subTree){
//删除根为subTree的子树
if(subTree!=null){
//删除左子树
destroy(subTree.leftChild);
//删除右子树
destroy(subTree.rightChild);
//删除根结点
subTree=null;
}
}
public void traverse(TreeNode subTree){
System.out.println("key:"+subTree.key+"--name:"+subTree.data);;
traverse(subTree.leftChild);
traverse(subTree.rightChild);
}
//前序遍历
public void preOrder(TreeNode subTree){
if(subTree!=null){
visted(subTree);
preOrder(subTree.leftChild);
preOrder(subTree.rightChild);
}
}
//中序遍历
public void inOrder(TreeNode subTree){
if(subTree!=null){
inOrder(subTree.leftChild);
visted(subTree);
inOrder(subTree.rightChild);
}
}
//后续遍历
public void postOrder(TreeNode subTree) {
if (subTree != null) {
postOrder(subTree.leftChild);
postOrder(subTree.rightChild);
visted(subTree);
}
}
//前序遍历的非递归实现
public void nonRecPreOrder(TreeNode p){
Stack<TreeNode> stack=new Stack<TreeNode>();
TreeNode node=p;
while(node!=null||stack.size()>0){
while(node!=null){
visted(node);
stack.push(node);
node=node.leftChild;
}
while(stack.size()>0){
node=stack.pop();
node=node.rightChild;
}
}
}
//中序遍历的非递归实现
public void nonRecInOrder(TreeNode p){
Stack<TreeNode> stack =new Stack<BinaryTree.TreeNode>();
TreeNode node =p;
while(node!=null||stack.size()>0){
//存在左子树
while(node!=null){
stack.push(node);
node=node.leftChild;
}
//栈非空
if(stack.size()>0){
node=stack.pop();
visted(node);
node=node.rightChild;
}
}
}
//后序遍历的非递归实现
public void noRecPostOrder(TreeNode p){
Stack<TreeNode> stack=new Stack<BinaryTree.TreeNode>();
TreeNode node =p;
while(p!=null){
//左子树入栈
for(;p.leftChild!=null;p=p.leftChild){
stack.push(p);
}
//当前结点无右子树或右子树已经输出
while(p!=null&&(p.rightChild==null||p.rightChild==node)){
visted(p);
//纪录上一个已输出结点
node =p;
if(stack.empty())
return;
p=stack.pop();
}
//处理右子树
stack.push(p);
p=p.rightChild;
}
}
public void visted(TreeNode subTree){
subTree.isVisted=true;
System.out.println("key:"+subTree.key+"--name:"+subTree.data);;
}
/**
* 二叉树的节点数据结构
* @author WWX
*/
private class TreeNode{
private int key = 0;
private String data = null;
private boolean isVisted = false;
private TreeNode leftChild = null;
private TreeNode rightChild = null;
public TreeNode(){}
/**
* @param key 层序编码
* @param data 数据域
*/
public TreeNode(int key,String data){
this.key = key;
this.data = data;
this.leftChild = null;
this.rightChild = null;
}
}
//测试
public static void main(String[] args) {
BinaryTree bt = new BinaryTree();
bt.createBinTree(bt.root);
System.out.println("the size of the tree is " + bt.size());
System.out.println("the height of the tree is " + bt.height());
System.out.println("***递归实现****(前序遍历)[ABDECF]遍历*****************");
bt.preOrder(bt.root);
System.out.println("***递归实现****(中序遍历)[DBEACF]遍历*****************");
bt.inOrder(bt.root);
System.out.println("***递归实现****(后序遍历)[DEBFCA]遍历*****************");
bt.postOrder(bt.root);
文末
逆水行舟不进则退,所以大家要有危机意识。
同样是干到35岁,普通人写业务代码划水,榜样们深度学习拓宽视野晋升管理。
这也是为什么大家都说35岁是程序员的门槛,很多人迈不过去,其实各行各业都是这样都会有个坎,公司永远都缺的高级人才,只用这样才能在大风大浪过后,依然闪耀不被公司淘汰不被社会淘汰。
为了帮助大家更好温习重点知识、更高效的准备面试,特别整理了《前端工程师核心知识笔记》电子稿文件。
内容包括html,css,JavaScript,ES6,计算机网络,浏览器,工程化,模块化,Node.js,框架,数据结构,性能优化,项目等等。
269页《前端大厂面试宝典》
包含了腾讯、字节跳动、小米、阿里、滴滴、美团、58、拼多多、360、新浪、搜狐等一线互联网公司面试被问到的题目,涵盖了初中级前端技术点。
开源分享:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最新讲解视频】
前端面试题汇总