###############频数与百分比############################
table(cgss_19$ethnicity)
a<-table(cgss_19$ethnicity)
View(a)
#也可以将频数赋值到一个对象,然后使用view函数来查看
b<-prop.table(a)*100
#根据民族的频数统计,创建相应的百分比统计,并存入对象b
b<-round(b,2)
#round()可以使对象值四舍五入保留一定的小数位,此处我们将百分比保留两位小数
c<-cbind(a,b)
#合并频数统计a和百分比统计b,存入对象c
colnames(c)<-c("频数","百分比")
View(c)
#修改
#利用epiDisplay函数对民族变量进行频数和百分比统计
library(epiDisplay)
tab1(cgss_19$ethnicity,cum.percent = TRUE)
###################对数据集cgss_19进行集中趋势统计####################
mean(cgss_19$income,na.rm = TRUE)
#求年收入的平均数
#结果为:32805.33
median(cgss_19$income,na.rm = TRUE)
#求年收入的中位数
#结果为20000
a1<-table(cgss_19$height)
names(a1)[which(a==max(a1))]
#结果为160
#使用分组统计函数统计函数aggregate
aggregate(data=cgss_19,height~gender,FUN = mean)
#计算男女性别身高平均数
height_mean<-aggregate(data=cgss_19,height~gender+ethnicity,FUN = mean)
View(height_mean)
sd(cgss_19$height)#求数据集中身高的标准差
#结果为8.090577
aggregate(data=cgss_19,height~ethnicity,FUN=sd)#求各民族受访者身高的标准差