应用密码学调研报告

《应用密码学》课程 调研报告.......................................................................................... 1

选题:椭圆曲线密码体制的分类与算法模型研究.............................................................. 1

一.问题背景................................................................................................................... 3

二.问题分析................................................................................................................... 3

三.解决方案................................................................................................................... 3

四.总结.......................................................................................................................... 3

五.参考文献     

椭圆曲线密码体制(Elliptic Curve Cryptography, ECC),1985年由尼尔·科比利茨(Neal Koblitz)和维克多·米勒(Victor Miller)分别独立提出的一种公钥密码体制,其安全基础是椭圆曲线上的离散对数问题,由于计算难度大,它能以更小的密钥提供更高等级的安全[1]

椭圆曲线密码体制的分类

ECC(椭圆曲线密码学)与传统非对称加密方法(如RSA)相比具有以下优势和特点:

1. 更短的密钥长度:在相同的安全级别下,ECC的密钥长度相对较短。例如,一个256位的ECC密钥与RSA的2048位密钥具有相似的安全性。这意味着使用ECC可以实现更高效的加密和解密操作。

2. 更快的加密和解密速度:相较于传统非对称加密方法,ECC运算速度更快。这对于在资源受限的环境(如移动设备)中进行加密通信至关重要。ECC的运算复杂度较低,因此它可以提供更快的响应时间和更高的吞吐量。

3. 更小的存储空间要求:由于ECC密钥较短,它所需的存储空间较少。这对于在受限环境中存储密钥非常有利,例如智能卡、传感器设备等。

4. 更好的抗量子计算攻击能力:传统非对称加密方法(例如RSA)的安全性依赖于大整数分解难题,而这些问题在量子计算机的出现下可能会变得容易解决。相比之下,ECC的安全性基于椭圆曲线上的离散对数问题,对量子计算机的攻击具有更高的抵抗力。[2]

椭圆曲线密码体制可以根据其应用场景和算法特性进行分类:

  1. 基于椭圆曲线离散对数问题(ECDLP)的密码体制:

   椭圆曲线数字签名算法(ECDSA):用于生成和验证数字签名。

   椭圆曲线密钥交换协议(ECDH):用于在双方之间安全地交换密钥。

   椭圆曲线加密算法(ECIES):结合对称加密算法,用于加密和解密数据。

2. 基于椭圆曲线上的其他数学问题的密码体制:

    椭圆曲线上的双线性对(如Weil对、Tate对):用于构造基于身份的加密(IBE)和属性基加密(ABE)等高级密码体制。

3. 基于椭圆曲线的哈希函数和随机数生成器:

    利用椭圆曲线的特性来构造安全的哈希函数和随机数生成器。

算法模型研究的背景

椭圆曲线密码体制的研究背景主要包括以下几个方面:

1. 安全性:研究椭圆曲线上的离散对数问题(ECDLP)的困难性,以及如何选择安全的椭圆曲线参数,以抵抗各种已知的攻击方法。

2. 效率:研究如何在保证安全性的前提下,提高椭圆曲线密码算法的计算效率,包括选择合适的曲线类型(如素数域上的曲线、二元域上的曲线)、优化点运算算法等。

3. 标准化:制定椭圆曲线密码体制的国际标准和规范,如NIST(美国国家标准与技术研究院)推荐的椭圆曲线参数,以及IEEE、ISO等组织的相关标准。

4. 应用扩展:研究椭圆曲线密码体制在新的应用场景中的适应性,如物联网(IoT)、区块链、云计算等领域的安全通信和数据保护。

1. 理论基础问题

椭圆曲线选择:如何选择合适的椭圆曲线以确保安全性,同时兼顾计算效率。这包括选择素数域或二元域上的曲线,以及确定曲线的参数(如基点、阶数等)。

离散对数问题(ECDLP)的困难性:研究ECDLP的计算复杂度,以及如何选择曲线参数以抵抗已知的攻击方法,如Pollard's rho算法、Pohlig-Hellman算法等。

2. 安全性分析问题

侧信道攻击:分析和防御侧信道攻击(如计时攻击、功耗分析等)对椭圆曲线密码体制的威胁。

量子计算威胁:研究量子计算对椭圆曲线密码体制的潜在威胁,以及如何设计抗量子计算的椭圆曲线密码算法。

椭圆曲线密码体制的安全性是基于求解椭圆曲线离散对数问题的最有效算算法的时间复杂度.与一般的有限乘法群上的离散对数问题不同,有限域上的椭圆曲线离散对数问题的求解更难,不能被所有已知算法在多项式时间内求解.在一般白的离散对数问题中,有限域上的代数对象由域加法和域乘法两种基本运算构成,这使得亚指数时间的离散对数运算算法可行.在椭圆曲线离散对数中,其代数运算只有一种基本运算,即椭圆曲线上的点加运算,这使得除了少数非常特殊的椭圆曲线外,亚指数时间的离散对数求解算法对椭圆曲线离散对数无效[3]

3. 实现效率问题

硬件和软件实现:研究如何在不同的硬件平台(如FPGA、ASIC)和软件环境中高效实现椭圆曲线密码算法。

资源受限环境:针对资源受限的设备(如智能卡、嵌入式系统),优化算法以减少存储和计算资源的需求。

4. 标准化问题

椭圆曲线密码体制(ECC)的标准化是确保其广泛应用和互操作性的关键。标准化过程涉及定义算法参数、协议规范和实现指南,以确保不同系统之间可以安全有效地交换信息。以下是关于ECC分类与算法模型研究中标准化问题的讨论:

1. 国际标准化组织(ISO):

 ISO/IEC 14888-3 定义了基于椭圆曲线的数字签名算法。

 ISO/IEC 15946 系列标准涵盖了基于椭圆曲线的加密技术。

2. 美国国家标准与技术研究院(NIST):

 NIST SP 800-56A 推荐了基于椭圆曲线的密钥协商方案。

 NIST SP 800-56B 定义了基于椭圆曲线的密钥生成。

 NIST FIPS 186-4 和 FIPS 186-5 规定了基于椭圆曲线的数字签名标准(ECDSA)。

3. 互联网工程任务组(IETF):

RFC文档中包含了许多与ECC相关的标准,如RFC 5639定义了椭圆曲线域参数。

4. 电气和电子工程师协会(IEEE):

IEEE P1363 系列标准涉及公钥密码学的各种算法,包括ECC。

5. 应用扩展问题

新应用场景:研究椭圆曲线密码体制在新的应用场景(如物联网、区块链、云计算)中的适应性和安全性。

高级密码体制:利用椭圆曲线上的双线性对等特性,设计基于身份的加密(IBE)、属性基加密(ABE)等高级密码体制。

  • 解决方案
  1. 基础问题解决方案

深入学习代数几何和数论,特别是关于椭圆曲线的部分。

掌握椭圆曲线的基本性质,如有限域上的椭圆曲线构成一个阿贝尔群。

理解椭圆曲线上的离散对数问题(ECDLP),这是ECC安全性的基础。

离散对数问题求解:

#include "stdafx.h"

#include <iostream>

using  namespace std;

int qx ;

int qy ;

class Point{

public:

    Point(int a, int b):px(a),py(b){}

    int getx(){ return px; }

    int gety(){ return py; }

    Point add(Point p2);

private:

    int px, py;

};

int x, y, q;

int func(int a, int  b){

    if (b == 0){

        x = 1; y = 0; q = a;

    }

    else{

        func(b, a%b);

        double t = x;

        x = y; y = t - a / b*y;

    }

    return y;//y是 b mod a的逆元 不保证y在一定范围内

}

Point Point:: add(Point p2){

    int x1 = px;

    int y1 = py;

    int x2 = p2.getx();

    int y2 = p2.gety();

    int r = 0;

    int x3 = x1, y3 = y1;

        if (x1 == x2&&y1 == y2){

            int ni = func(29, 2 * y1);

            while (ni<0){

                ni += 29;

            }

            r = ((3 * x1*x1 + 4)*ni)%29;

        }

        else{

            int x21 = x2 - x1;

            while (x21 < 0){ x21 = x21 + 29; }

            int ni = func(29, x21);

            while (ni<0){

                ni += 29;

            }

            r = ((y2 - y1)*ni)%29;

        }

    x3 = (r*r - x1 - x2);

    while (x3 < 0 || x3 >= 29){

        if (x3 < 0){ x3 = x3 + 29; }

        else{ x3 = x3 - 29; }

    }

    y3 = (r*(x1 - x3) - y1);

    while (y3< 0 || y3 >= 29){

        if (y3 < 0){y3 = y3 + 29; }

        else{ y3= y3 - 29; }

    }

    return Point(x3, y3);

}

int qiuk(){

    Point p(13, 23);

    Point pp = p;

    for (int i = 0;; i++){

        if (pp.getx() == 3 && pp.gety() == 28){

            return (i + 1);

        }

        pp = pp.add(p);

    }

}

int _tmain(int argc, _TCHAR* argv[])

{

    cout << "曲线E:y2=x3+4x+20 (mod 29)" << endl;

    cout << "点P=(13,23),Q=(3,28)" << endl;

    cout << "满足kP=Q的k是:" << endl;

    cout <<qiuk()<<endl;

    return 0;

}

2. 安全性分析问题解决方案

选择具有良好安全特性的椭圆曲线,如NIST推荐的曲线。

进行安全性分析,评估椭圆曲线的参数是否存在潜在的弱点。

研究最新的密码分析技术,确保所选曲线不会受到这些技术的影响。

实施抗侧信道攻击的措施,如使用盲化技术、掩码技术等。

使用安全的随机数生成器来生成密钥。

采用密钥管理策略,如密钥托管、密钥轮换和密钥撤销机制。

保护密钥在存储和传输过程中的安全,使用加密和认证技术。

例如密钥生成和管理代码:

// 密钥生成和管理函数

EC_Point* generate_key_pair();

void save_key(EC_Point* public_key, EC_Point* private_key);

void load_key(EC_Point* public_key, EC_Point* private_key);

或者使用椭圆曲线上的双线性对称加密(ECIES)算法。生成随机密钥K并计算公钥Q和私钥P

EC_Point* EC_Dbl(EC_Point* P);

EC_Point* EC_Add(EC_Point* P1, EC_Point* P2);

// 加密和解密函数

void encrypt(EC_Point* Q, EC_Point* K);

void decrypt(EC_Point* P, EC_Point* ciphertext);

3. 实现效率问题解决方案

优化椭圆曲线点运算的算法,如使用窗口法、蒙哥马利阶梯法等。

选择合适的曲线参数,如使用小特征的有限域可以提高计算效率。

利用硬件加速,如使用专门的密码处理器或FPGA来执行椭圆曲线运算。

在解决测信道攻击时常采用一下技术:

噪声注入:通过引入随机噪声到电路,混淆侧信道信号,使得攻击者难以从物理特征中提取有用信息。

保护措施:使用屏蔽、封装或隔离技术,减少敏感数据的直接物理接触,如使用硬件加速器或者在软件中进行精心设计的算法执行。

加密算法实现优化:选择抗SCA的算法变种,例如使用双线性映射(BLISS)、混合加密等技术,使攻击复杂度增加。

故障注入检测:实施错误检测机制,当检测到异常行为时,怀疑并可能停止加密过程,以应对可能的攻击。

安全设计:采用安全的硬件设计,比如选择低功耗、低泄漏的器件,并使用安全的模块化和分层设计。

对于量子计算威胁:

选择更安全的数学难题:寻找那些量子计算机难以解决但经典计算机相对容易处理的数学问题,例如基于环同构或配对运算的密码方案(如Ring-LWE或SPHINCS)。

后量子安全增强:采用所谓的“后量子安全”算法,这些算法即使在量子计算机面前也足够安全。这可能包括使用量子安全的哈希函数或基于新型数学难题的混合系统。

量子安全参数调整:增加密钥长度或使用更大的椭圆曲线,尽管这会增大存储和计算成本,但理论上能提供更高的安全性。

混合加密:结合现有的经典加密算法(如AES)与后量子安全算法,形成混合加密策略,即使量子计算机破解一部分,其他部分仍保持安全。

4. 标准化问题解决方案

1.选择标准曲线:标准化组织(如NIST、SECG、ISO等)需要选择一组标准椭圆曲线,这些曲线应该具有良好的数学特性,以确保安全性并减少计算复杂性。这些曲线通常是经过严格分析和验证的。

2.确保互操作性:标准化工作需要确保不同厂商和实现之间的互操作性。这意味着所有实现都必须遵循相同的协议和曲线参数。

3.性能优化:标准化还需要考虑如何在不同的硬件和软件平台上优化椭圆曲线算法的性能。

4.文档和教育:标准化组织需要提供详细的文档,解释如何正确实现和使用椭圆曲线密码技术,以及如何避免常见的安全陷阱。

5.持续更新和审查:随着新的数学发现和计算能力的提升,标准化工作需要持续更新和审查现有的标准,以确保它们仍然安全有效。

通过对椭圆曲线密码体制的分类与算法模型研究的调研,可以得出以下结论:

椭圆曲线在许多领域都起到十分重要的作用, 椭圆曲线密码体制的研究和应用是一个持续发展的领域。随着新的数学理论的发展和计算技术的进步,椭圆曲线密码体制将继续优化,以提供更高的安全性和更好的性能。随着密码学技术的不断发展,更多的问题解决方法将被研究出来,同时,随着量子计算的潜在威胁,研究者们也在探索后量子时代的椭圆曲线密码体制,以确保未来的网络安全。椭圆曲线密码体制仍面临一些挑战,如侧信道攻击的防护、算法实现的复杂性、以及新数学攻击方法的研究。

1、《计算机科学技术名词》第一版。

2、椭圆曲线密码体制的分类与算法模型研究

3、《椭圆曲线密码体制的研究与应用》

 

[2]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值