T1
题目传送门:U427500
分析
- 注意到,当高度上升时,会对答案贡献+高度,当高度下降时,会对答案贡献-2高度
- 记总上升高度为u,总下降高度为d,则答案为d-2u
- 假设结束时位置为x,则我们有
,那么答案也可以表示为
- 注意到
只与结束位置有关,
为定值,而我们可以算出到每个位置结束的最短路。故我们只需要求出到每个位置结束时d最小是多少
- 也就是幸福度上升时连边权为0的边,幸福度下降时连边权为幸福度的边求1号点到每个点的最短路。时间复杂度
- 对于一条边
,若从
走到
幸福值上升,则连一条边权为上升的幸福值的边,若幸福值下降,则连一条边权为负下降的幸福值的边
- 求1号点到任何一个点的最长路即可(相当于边权取相反数求最短路)
算法
Dijikstra算法,详情见我的博客
代码
#include <cstdio>
#include <queue>
#include <cstring>
typedef std::pair<int, int> P;
std::priority_queue<P, std::vector<P>, std::greater<P> > pq;
int h[201000], nxt[401000], to[401000], cost[401000], K = 0;
int d[201000];
int a[201000];
void ins(int u, int v, int c) {nxt[++K] = h[u]; h[u] = K; to[K] = v; cost[K] = c;}
void dij(int S)
{
memset(d, 0x3f, sizeof(d));
d[S] = 0;
pq.push(P(d[S], S));
while(!pq.empty())
{
P p = pq.top(); pq.pop();
int u = p.second;
if(d[u] < p.first) continue;
for(int i = h[u]; i; i = nxt[i])
{
if(d[to[i]] > d[u] + cost[i])
{
d[to[i]] = d[u] + cost[i];
pq.push(P(d[to[i]], to[i]));
}
}
}
}
int main()
{
int n, m, s, t; scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
for(int i = 1; i <= m; i++)
{
int u, v; scanf("%d%d", &u, &v);
if(a[u] < a[v])
{
ins(u, v, a[v] - a[u]);
ins(v, u, 0);
}
else
{
ins(u, v, 0);
ins(v, u, a[u] - a[v]);
}
}
dij(1);
int ans = -1e9;
for(int i = 1; i <= n; i++)
ans = std::max(ans, -a[i] - d[i]);
printf("%d\n", ans + a[1]);
}