2024年Python数据可视化三部曲之 Matplotlib 从上手到上头

plt.ylim() 设置y轴范围。

plt.xlim() 设置x轴范围。

import matplotlib.pyplot as plt

plt.plot([1, 1, 0, 0, -1, 0, 1, 1, -1])

plt.ylim(-3, 3)

plt.xlim(-10, 20)

plt.show()

在这里插入图片描述


3.设置坐标标签 plt.xticks() & plt.yticks()

==========================================================================================================

设置标签,即可以将plot()中传入的x、y的元素值在坐标轴中以其他形式显示出来。

具体方法为

plt.xticks(location, lables,rotation)

plt.yticks(location, lables,rotation)

其中,location表示原x/y轴的数据(而不是位置索引下标),lables指新设定的标签,元素数量要与location相同,且与location相同位置上有着一一对应的关系。

rotation参数通过设定一个角度的数值,可以将设定的标签旋转一定的角度。(示例代码中将x轴标签旋转45度)

且在设置标签过程中,标签可以选择设置部分。没有设置的标签也不会再显示原值。(如下边代码中没有设置x轴上数值“2”处的标签)

具体示例如下:

import matplotlib.pyplot as plt

正常显示中文

plt.rcParams[‘font.sans-serif’] = [‘SimHei’]

plt.plot([1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 1, 0, 0, -1, 0, 1, 1, -1])

plt.ylim(-3, 3)

plt.xlim(-10, 20)

plt.xticks([1, 3, 4, 5, 6, 7, 8, 9],

[‘02-01’, ‘02-03’, ‘02-04’,

‘02-05’, ‘02-06’, ‘02-07’, ‘02-08’,

‘02-09’], rotation=45)

plt.yticks([0, 1, -1], [‘低’, ‘高’, ‘中’])

plt.show()

在这里插入图片描述


4.负号正常显示 与 中文正常显示 问题

==========================================================================================

负号正常显示

rcParams 是Matplotlib库中pyplot包绘图的参数字典,key为’axes.unicode_minus’的默认取值(value)为True,表示unicode的minus类型,有些字体对其兼容性支持不够,导致负号无法正常显示,现在将’axex.unicode_minus’的取值设为False,则可正常显示负号。

代码:

plt.rcParams[‘axes.unicode_minus’] = False


中文正常显示

默认情况下,图形中的中文为乱码形式

每次绘图前,通过代码更改参数。更改Matplotlib包中pyplot包的参数字(rcParams)字体的无衬线字体属性(font.sans-serif, 为参数字典的一个key)的取值(value),现将其设定为以’SimHei’为元素的数组形式。

代码:

plt.rcParams[‘font.sans-serif’] = [‘SimHei’]


5. 设置坐标 轴 标签 plt.xlabel() & plt.ylabel()

===============================================================================================================

在图像中添加坐标轴标题可以直观地显示坐标轴代表的数据变量。

plt.xlabel()

plt.ylabel()

import matplotlib.pyplot as plt

plt.rcParams[‘font.sans-serif’] = [‘SimHei’]

plt.plot([1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 1, 0, 0, -1, 0, 1, 1, -1])

plt.xticks([1, 2, 3, 4, 5, 6, 7, 8, 9],

[‘02-01’, ‘02-02’, ‘02-03’, ‘02-04’,

‘02-05’, ‘02-06’, ‘02-07’, ‘02-08’,

‘02-09’], rotation=45)

plt.yticks([0, 1, -1], [‘低’, ‘高’, ‘中’])

plt.xlabel(‘日期’)

plt.ylabel(‘A指标’)

plt.show()

在这里插入图片描述


6.增加标题 plt.title()

========================================================================================

plt.title()

import matplotlib.pyplot as plt

plt.rcParams[‘font.sans-serif’] = [‘SimHei’]

plt.title(‘xxxxxxxxxxx图像’)

plt.plot([1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 1, 0, 0, -1, 0, 1, 1, -1])

plt.xticks([1, 2, 3, 4, 5, 6, 7, 8, 9],

[‘02-01’, ‘02-02’, ‘02-03’, ‘02-04’,

‘02-05’, ‘02-06’, ‘02-07’, ‘02-08’,

‘02-09’], rotation=45)

plt.yticks([0, 1, -1], [‘低’, ‘高’, ‘中’])

plt.xlabel(‘日期’)

plt.ylabel(‘A指标’)

plt.show()

在这里插入图片描述


7.增加图例 和 网格 plt.legend() & plt.grid()

===========================================================================================================

增加图例可以通过plt.plot()方法的label参数添加,也可以通过plt.legend()添加。

增加网格通过plt.grid()方法添加。

plt.legend()

第一个参数是一个可迭代对象,其元素为表示图例的字符串,其传入时的顺序与上边代码中线条绘制的顺序一一对应。

第二个参数是loc参数,表示图例显示的位置。

第三个参数为字体大小fontsize。

plt.grid(b=None,which=‘major’, axis=‘both’, **kwargs)

参数b:

布尔数据类型,设定是否显示grid。默认为None,不显示。如需显示,则将B设定为True。

参数which:

设定 分割标示线(tick) 的类型,取值为"major", “minor"或者"both”。

默认为"major",表示以原本坐标轴分割标示线为准;

若取值为"minor",则表示 进一步细分 坐标轴分割标示线,但是 分割标准要提前设定好。如果只是设定值为"minor",则图形不会显示grid。

“both"表示大小区间坐标轴分割线都有。

参数axis:

制定绘制grid的坐标轴,取值为"both”(default), “x”, 或者"y"。both表示X轴和Y轴的grid都绘制。 默认都绘制。

import matplotlib.pyplot as plt

plt.rcParams[‘font.sans-serif’] = [‘SimHei’]

plt.rcParams[‘axes.unicode_minus’] = False

plt.plot([5.12, 5.15, 5.13, 5.10, 5.2, 5.25, 5.19, 5.24, 5.31], label=‘股票A收盘价’)

plt.plot([5.09, 5.13, 5.16, 5.12, 5.09, 5.25, 5.16, 5.20, 5.25], label=‘股票B收盘价’)

plt.xticks(range(9), [

‘2021-02-01’, ‘2021-02-02’, ‘2021-02-03’, ‘2021-02-04’,

‘2021-02-05’, ‘2021-02-06’, ‘2021-02-07’, ‘2021-02-08’,

‘2021-02-09’], rotation=45)

plt.title(‘某股票收盘价时序图’)

plt.xlabel(‘日期’)

plt.ylabel(‘价格’)

plt.grid(True, axis=‘y’)

plt.legend()

plt.show()

在这里插入图片描述


8. 设置样式(颜色,线条,标记)

========================================================================================

8.1 线条颜色 color


修改图形的颜色通过设定plot()的color参数来实现,color参数也可以简写为c。

颜色的取值有多种方式指定,最常用的是直接设定颜色的名称或颜色名称的简写,也可以通过RGB数组(比如(1,1,0)等其他方式设定)。

常用的颜色简写有

| 颜色 | 简写 | 英文 |

| — | — | — |

| 蓝色 | b | blue |

| 红色 | r | red |

| 绿色 | g | green |

| 黄色 | y | yellow |

| 黑色 | k | black |

| 白色 | w | white |

| 洋红色(也称品红色) | m | magenta |

| 蓝绿色(即青色) | c | cyan |

此外,常用颜色还可以选择的有brown,purple,pink,orange,olive,gold,gray等。


8.2 线条样式 linestyle


plot()函数中的linestyle参数用于设定曲线的类型。为了书写方便,有时会用ls代替linestyle, 该参数的主要取值如表所示:

线条类型可能的取值有

| 类型 | 名称取值 | 符号取值 |

| — | — | — |

| 实线 | ‘solid’ | ‘-’ |

| 虚线(也称双画线) | ‘dashed’ | ‘—’ (两个短杠) |

| 线点 | ‘dashdot’ | ‘-.’ |

| 点线 | ‘dotted’ | ‘:’ |

| 不画线 | ‘None’ | ‘’ |

| 虚线(另一种) | | ‘:’ |


8.3 标记样式 maker


除了线条样式外,还可以设置数据点的形状。数据点形状通过plot()方法的maker参数来设定。maker参数取值有很多,如表所示:

点的形状marker的部分值表

| 形状含义 | 符号取值(marker) |

| — | — |

| 点标记 | . |

| 像素标记 | , |

| 实心圆标记 | o |

| 向下三角形标记 | v |

| 向上三角形标记 | ^ |

| 向左三角形标记 | < |

| 向右三角形标记 | > |

| 实心正方形标记 | s |

| 实心五角星标记 | ‘p’ |

| 竖六边形标记 | ‘h’ |

| 横六边形标记 | ‘H’ |

| 下花三角标记 | 1 |

| 上花三角标记 | 2 |

| 左花三角标记 | 3 |

| 右花三角标记 | 4 |

| 加号标记 | ‘+’ |

| 叉号标记 | ‘x’ |

| 钻石标记(大菱形标记) | D |

| 小钻石标记(小菱形标记) | d |

| 星号标记 | ‘*’ |

| 竖线标记 | ‘|’ |


8.4 线条宽度 linewidth


线条的宽度通过参数linewidth来设定。参数linewidth也可以简写成lw。


8.5 标记的样式


参数mfc用于设置标记的颜色

参数ms用于设置标记的大小

参数mec用于设置标记的边框的颜色。

__

8.6 样式使用示例


绘制两条折线为例

一条为红色,线条样式为“点线”类型,标记为大菱形标记,线条宽度为2。

另一条为绿色,线条样式为虚线类型(’:’),标记为横六边形标记,线条宽度为4。

import matplotlib.pyplot as plt

plt.rcParams[‘font.sans-serif’] = [‘SimHei’]

plt.rcParams[‘axes.unicode_minus’] = False

plt.plot([5.12, 5.15, 5.13, 5.10, 5.2, 5.25, 5.19, 5.24, 5.31], label=‘股票A收盘价’, c=‘r’, ls=‘-.’, marker=‘D’, lw=2)

plt.plot([5.09, 5.13, 5.16, 5.12, 5.09, 5.25, 5.16, 5.20, 5.25], label=‘股票B收盘价’, c=‘g’, ls=‘:’, marker=‘H’, lw=4)

plt.xticks(range(9), \

[‘2021-02-01’, ‘2021-02-02’, ‘2021-02-03’, ‘2021-02-04’, \

‘2021-02-05’, ‘2021-02-06’, ‘2021-02-07’, ‘2021-02-08’, \

‘2021-02-09’], rotation=45)

plt.title(‘某股票开盘价&收盘价时序图’)

plt.xlabel(‘日期’)

plt.ylabel(‘价格’)

plt.grid(True)

plt.legend()

plt.show()

图像展示如下:

在这里插入图片描述


9.面向对象绘图

==============================================================================

9.1 面向对象绘图 - 创建画布对象


设置画布,Matplotlib绘图的一大特色,即面向对象绘图。

使用Matplotlib面向对象绘图,绘图前我们要先创建一个Figure对象,即所谓的“画布”,Figure对象是一个空白区域。Figure对象可以通过pyplot包中的figure函数进行创建。

fig = plt.figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None, frameon=True)

其中

num  指图像的编号或名称,数字为编号,字符串为名称。通过此参数来指定、区分不同的Figure对象。

figsize  指画布的宽和高,单位为英寸。(x, y)

dpi  指画布的分辨率,即每英寸有多少个像素,默认为80。

facecolor  指背景颜色。

edgecolor  指边框颜色。

frameon  指是否显示边框,默认为True,表示绘制边框。否则不绘制边框。

import matplotlib.pyplot as plt

fig = plt.figure(1, facecolor=‘r’, figsize=(5, 3))

plt.plot([1, 1, 0, 0, -1, 0, 1, 1, -1])

plt.show()

在这里插入图片描述


对于每个Figure对象,都可以包含一个或者多个个Axes对象,每个Axes对象即一个绘图区域,其拥有自己独立的坐标系统。

不设置画布时则自动创建一个只有一个Axes对象的画布,且位置居中。

创建好Figure和Axes后,绘图时直接对创建的Axes对象调用相关方法即可(如ax1.plot()),不必再使用类似plt.plot()这样的形式。此即面向对象绘图。


9.2 创建Axes对象


以创建一个包含两个Axes的Figure对象为例,创建的方法有两种,一种是调用Figure对象的add_axes()方法,另一则是调用matplotlib的subplot()方法。


add_axes()方法

使用add_axes()方法创建Axes时,以对Figure对象fig创建Axes对象ax1为例,其语法如下

ax1 = fig.add_axes([x1,y1,x2,y2])

需要传入一个有四个元素的列表,四个数字依次表示创建的Axes的左下角、右上角的相对坐标位置。(原点在Figure对象左下角,计算相对位置时,Figure的宽和高都视为1个单位长度,要传入的坐标值都是0到1的浮点数)

import matplotlib.pyplot as plt

fig = plt.figure()

创建两个Axes对象

ax1 = fig.add_axes([0.1, 0.1, 0.3, 0.3])

ax2 = fig.add_axes([0.5, 0.5, 0.4, 0.4])

plt.show()

在这里插入图片描述


plt.subplot()方法

使用plt.subplot()方法创建Axes时,其语法如下

subplot(numRows, numCols, plotNum)

其中

num_Rows  指图像排多少行

numCols  指图像排多少列

plotNum  指图像的位置左上角第一个图像的位置开始记为1,往右依次记为2,3…,每一行的图像接着排下去,最终右下角的图像编号等于num_Rows×plotNum。

代码示例如下:

import matplotlib.pyplot as plt

位置1

ax1 = plt.subplot(221)

ax1.set_title(‘ax1’)

位置2

ax2 = plt.subplot(222)

ax2.set_title(‘ax2’)

位置3

ax3 = plt.subplot(223)

ax3.set_title(‘ax3’)

位置4

ax4 = plt.subplot(224)

ax4.set_title(‘ax4’)

plt.show()

在这里插入图片描述


9.3 常用面向对象绘图方法


以Axes对象ax1为例,常用的面向对象绘图方法有:

#绘图

ax1.plot()


#设置网格

ax1.grid()


#设置标题

ax1.set_title(‘ax1_title’)


#设置标签

ax1.set_xlabel()


ax1.set_ylabel()


一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里无偿获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值