2024年基于python+django的学术会议跟踪分析预测系统

请添加图片描述

本文采用分析数据方法和scipy框架对数据进行分析,最终用 pillow 库来实现交互界面。在做设计的过程中,了解了很多大数据分析方法,锻炼了自主学习的能力,使用最新的知识对数据进行分析,更好的将数据分析应用到实际应用中去。文章对数据移动会议用户进行流失情况的分析,得出影响会议用户使用的多种因素。使用第三方库抽取会议跟踪数据,本文使用的是会议移动设备,对会议用户的使用属性和行为数据进行分析挖掘,建立预测会议用户模型。

目 录

第一章 绪 论 1

第二章 预测模型构建 4

第三章 预测模型构建 5

3.1业务理解 5

3.1.1业务现状 5

3.1.2问题定义 5

3.2 流失行为 6

3.2.1. 会议用户流失行为定义 6

3.2.2 滚动使用分析 6

3.3 构造分析样本 7

3.4. 检验数据质量 8

第四章 建模分析 9

4.1. django的选择 9

4.2. 抽样与过抽样 9

4.3. 数据探索与修改 9

4.3.1. 变量离散化 10

4.3.2. WOE(Weights of Evidence)值计算: 10

4.3.3. 变量选择 10

4.4. 建模 12

第五章 模型评价 13

  1. 是否达到符合应用要求的准确性水平 13

  2. 是否具有较高的稳定性 13

  3. 是否简单 13

  4. 是否有意义 13

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值