本文采用分析数据方法和scipy框架对数据进行分析,最终用 pillow 库来实现交互界面。在做设计的过程中,了解了很多大数据分析方法,锻炼了自主学习的能力,使用最新的知识对数据进行分析,更好的将数据分析应用到实际应用中去。文章对数据移动会议用户进行流失情况的分析,得出影响会议用户使用的多种因素。使用第三方库抽取会议跟踪数据,本文使用的是会议移动设备,对会议用户的使用属性和行为数据进行分析挖掘,建立预测会议用户模型。
目 录
第一章 绪 论 1
第二章 预测模型构建 4
第三章 预测模型构建 5
3.1业务理解 5
3.1.1业务现状 5
3.1.2问题定义 5
3.2 流失行为 6
3.2.1. 会议用户流失行为定义 6
3.2.2 滚动使用分析 6
3.3 构造分析样本 7
3.4. 检验数据质量 8
第四章 建模分析 9
4.1. django的选择 9
4.2. 抽样与过抽样 9
4.3. 数据探索与修改 9
4.3.1. 变量离散化 10
4.3.2. WOE(Weights of Evidence)值计算: 10
4.3.3. 变量选择 10
4.4. 建模 12
第五章 模型评价 13
-
是否达到符合应用要求的准确性水平 13
-
是否具有较高的稳定性 13
-
是否简单 13
-
是否有意义 13