环境搭建
PULSE 算法采用 Pytorch 实现,使用了 dlib 人脸库的一些 API。
项目地址:
https://github.com/adamian98/pulse
环境搭建不复杂,工程里的 pulse.yml 文件,已经写明了依赖环境。
name: pulse
channels:
-
pytorch
-
defaults
dependencies:
-
blas=1.0=mkl
-
ca-certificates=2020.1.1=0
-
certifi=2020.4.5.1=py38_0
-
cffi=1.14.0=py38hc512035_1
-
chardet=3.0.4=py38_1003
-
cryptography=2.9.2=py38ha12b0ac_0
-
cycler=0.10.0=py38_0
-
freetype=2.9.1=hb4e5f40_0
-
idna=2.9=py_1
-
intel-openmp=2019.4=233
-
jpeg=9b=he5867d9_2
-
kiwisolver=1.2.0=py38h04f5b5a_0
-
libcxx=10.0.0=1
-
libedit=3.1.20181209=hb402a30_0
-
libffi=3.3=h0a44026_1
-
libgfortran=3.0.1=h93005f0_2
-
libpng=1.6.37=ha441bb4_0
-
libtiff=4.1.0=hcb84e12_0
-
matplotlib=3.1.3=py38_0
-
matplotlib-base=3.1.3=py38h9aa3819_0
-
mkl=2019.4=233
-
mkl-service=2.3.0=py38hfbe908c_0
-
mkl_fft=1.0.15=py38h5e564d8_0
-
mkl_random=1.1.0=py38h6440ff4_0
-
ncurses=6.2=h0a44026_1
-
ninja=1.9.0=py38h04f5b5a_0
-
numpy=1.18.1=py38h7241aed_0
-
numpy-base=1.18.1=py38h6575580_1
-
olefile=0.46=py_0
-
openssl=1.1.1g=h1de35cc_0
-
pandas=1.0.3=py38h6c726b0_0
-
pillow=7.1.2=py38h4655f20_0
-
pip=20.0.2=py38_3
-
pycparser=2.20=py_0
-
pyopenssl=19.1.0=py38_0
-
pyparsing=2.4.7=py_0
-
pysocks=1.7.1=py38_0
-
python=3.8.2=hf48f09d_13
-
python-dateutil=2.8.1=py_0
-
pytorch=1.5.0=py3.8_0
-
pytz=2020.1=py_0
-
readline=8.0=h1de35cc_0
-
requests=2.23.0=py38_0
-
scipy=1.4.1=py38h44e99c9_0
-
setuptools=46.2.0=py38_0
-
six=1.14.0=py38_0
-
sqlite=3.31.1=h5c1f38d_1
-
tk=8.6.8=ha441bb4_0
-
torchvision=0.6.0=py38_cpu
-
tornado=6.0.4=py38h1de35cc_1
-
urllib3=1.25.8=py38_0
-
wheel=0.34.2=py38_0
-
xz=5.2.5=h1de35cc_0
-
zlib=1.2.11=h1de35cc_3
-
zstd=1.3.7=h5bba6e5_0
-
pip:
-
dlib==19.19.0
prefix: /path/to/your/anaconda3/envs/pulse
直接使用 pulse.yml 文件,用 Anaconda 进行环境配置。
修改 pulse.yml 文件中 prefix 的路径为你的 Anaconda 路径,然后使用指令创建环境:
conda create -f pulse.yml
这是官方推荐的方法。亲测,依然遇到了一些依赖问题。
最后一个一个依赖包安装才解决,所以我建议是使用 Anaconda 通过第三方库的包名安装,不用管版本啥的,例如:
conda install ca-certificates requests
libcxx、libedit 等这类的 lib 库不用安装,Anaconda 在创建 Python 环境的时候已经安装好了。
这里面稍微难安装的就是 dlib,dlib 需要使用 cmake 进行编译,所以需要先安装好 cmake,这里使用 pip 安装即可:
python -m pip install cmake dlib
都搞定了,环境就算搭建完成了。
4
效果测试
PULSE 项目地址:
https://github.com/adamian98/pulse
下载项目到本地:
git clone https://github.com/adamian98/pulse
项目提供了 pretrained model ,模型放在了 Google Drive ,不能翻墙的无法下载。
所以我将模型下载好,上传到了我的百度网盘。
下载地址(提取码:3gpq):
https://pan.baidu.com/s/13NZ8RY8KSogY78xh3gpcJA
在工程目录,创建 cache、realpics 两个文件夹,将下载好的三个文件放到 cache 文件夹内。
然后将下图放到 realpics 文件夹内,我们以此图为例,进行测试。
图片下载地址:
https://cuijiahua.com/wp-content/uploads/2020/07/dl-21-6.jpg
首先,我们使用 align_face.py 对图片 downscale。
python align_face.py
程序使用 dlib 检测人脸框,并对检测到的人脸进行降低分辨率处理,默认降低为 32x32 分辨率的图片。
生成的图片会放到 input 文件夹内,如果将图片放大到 1024x1024,就是相当于一张布满马赛克的图片。
有了这张 LR 图片,也就是低分辨率图片,使用 PULSE 算法,看下「脑补」效果吧!
python run.py -steps=2000
运行 run.py ,迭代 2000 steps,在 runs 文件夹下就会生成“去除”马赛克后的「脑补」图。
「脑补」图跟原图还是有些神似的!
5
争议
我们都知道,今年 5 月 25 日美国的「跪杀黑人」事件。
由此引发了美国有史以来,最大规模的游行抗议。
最后
不知道你们用的什么环境,我一般都是用的Python3.6环境和pycharm解释器,没有软件,或者没有资料,没人解答问题,都可以免费领取(包括今天的代码),过几天我还会做个视频教程出来,有需要也可以领取~
给大家准备的学习资料包括但不限于:
Python 环境、pycharm编辑器/永久激活/翻译插件
python 零基础视频教程
Python 界面开发实战教程
Python 爬虫实战教程
Python 数据分析实战教程
python 游戏开发实战教程
Python 电子书100本
Python 学习路线规划
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!