最后
本人也收藏了一份Java面试核心知识点来应付面试,借着这次机会可以送给我的读者朋友们:
目录:
Java面试核心知识点
一共有30个专题,足够读者朋友们应付面试啦,也节省朋友们去到处搜刮资料自己整理的时间!
Java面试核心知识点
for rect in car_contours:
rect = (rect[0], (rect[1][0]+20, rect[1][1]+5), rect[2])
box = cv2.boxPoints(rect)
#图像矫正 cv2.getAffineTransform(pos1,pos2),其中两个位置就是变换前后的对应位置关系。输出的就是仿射矩阵M,最后这个矩阵会被传给函数 cv2.warpAffine() 来实现仿射变换
if rect[2] > ANGLE: #正角度
new_right_point_x = vertices[0, 0]
new_right_point_y = int(vertices[1, 1] - (vertices[0, 0] - vertices[1, 0]) / (vertices[3, 0] - vertices[1, 0]) * (vertices[1, 1] - vertices[3, 1]))
new_left_point_x = vertices[1, 0]
new_left_point_y = int(vertices[0, 1] + (vertices[0, 0] - vertices[1, 0]) / (vertices[0, 0] - vertices[2, 0]) * (vertices[2, 1] - vertices[0, 1]))
point_set_1 = np.float32([[440, 0], [0, 0], [0, 140], [440, 140]])
elif rect[2] < ANGLE: #负角度
new_right_point_x = vertices[1, 0]
new_right_point_y = int(vertices[0, 1] + (vertices[1, 0] - vertices[0, 0]) / (vertices[3, 0] - vertices[0, 0]) * (vertices[3, 1] - vertices[0, 1]))
new_left_point_x = vertices[0, 0]
new_left_point_y = int(vertices[1, 1] - (vertices[1, 0] - vertices[0, 0]) / (vertices[1, 0] - vertices[2, 0]) * (vertices[1, 1] - vertices[2, 1]))
point_set_1 = np.float32([[0, 0], [0, 140], [440, 140], [440, 0]])
new_box = np.array([(vertices[0, 0], vertices[0, 1]), (new_left_point_x, new_left_point_y), (vertices[1, 0], vertices[1, 1]),(new_right_point_x, new_right_point_y)])
point_set_0 = np.float32(new_box)
mat = cv2.getPerspectiveTransform(point_set_0, point_set_1)
dst = cv2.warpPerspective(img, mat, (440, 140))
cv_show(‘dst’,dst)
#-------------------------------字符分割-------------------------------------
plate_original = dst.copy()
img_aussian = cv2.GaussianBlur(dst,(5,5),1)
cv_show(‘img_aussian’,img_aussian)
#中值滤波
dst = cv2.medianBlur(img_aussian,3)
对车牌进行精准定位
img_B = cv2.split(dst)[0]
img_G = cv2.split(dst)[1]
img_R = cv2.split(dst)[2]
for i in range(dst.shape[:2][0]):
for j in range(dst.shape[:2][1]):
if abs(img_B[i,j] - Blue) < THRESHOLD and abs(img_G[i,j] - Green) <THRESHOLD and abs(img_R[i,j] - Red) < THRESHOLD:
dst[i][j][0] = 0
dst[i][j][1] = 0
dst[i][j][2] = 0
else:
dst[i][j][0] = 255
dst[i][j][1] = 255
dst[i][j][2] = 255
cv_show(‘dst’,dst)
灰度化
gray = cv2.cvtColor(dst, cv2.COLOR_BGR2GRAY)
cv_show(‘gray’,gray)
#-------------------------------跳变次数去掉铆钉和边框----------------------------------
times_row = [] #存储哪些行符合跳变次数的阈值
for row in range(LICENSE_HIGH): # 按行检测 白字黑底
pc = 0
for col in range(LICENSE_WIDTH):
if col != LICENSE_WIDTH-1:
if gray[row][col+1] != gray[row][col]:
pc = pc + 1
times_row.append(pc)
print(“每行的跳变次数:”,times_row)
#找车牌的下边缘-从下往上扫描
row_end = 0
row_start = 0
for row in range(LICENSE_HIGH-2):
if times_row[row] < 16:
continue
elif times_row[row+1] < 16:
continue
elif times_row[row+2] < 16:
continue
else:
row_end = row + 2
print(“row_end”,row_end)
#找车牌的上边缘-从上往下扫描
i = LICENSE_HIGH-1
row_num = [] #记录row_start可能的位置
while i > 1:
if times_row[i] < 16:
i = i - 1
continue
elif times_row[i-1] < 16:
i = i - 1
continue
elif times_row[i-2] < 16:
i = i - 1
continue
else:
row_start = i - 2
row_num.append(row_start)
i = i - 1
print(“row_num”,row_num)
#确定row_start最终位置
for i in range(len(row_num)):
if i != len(row_num)-1:
if abs(row_num[i] - row_num[i+1])>3:
row_start = row_num[i]
print(“row_start”,row_start)
times_col = [0]
for col in range(LICENSE_WIDTH):
pc = 0
for row in range(LICENSE_HIGH):
if row != LICENSE_HIGH-1:
if gray[row,col] != gray[row+1,col]:
pc = pc + 1
times_col.append(pc)
print(“每列的跳变次数”,times_col)
找车牌的左右边缘-从左到右扫描
col_start = 0
col_end = 0
for col in range(len(times_col)):
if times_col[col] > 2:
col_end = col
print(‘col_end’,col_end)
j = LICENSE_WIDTH-1
while j >= 0:
if times_col[j] > 2:
col_start = j
j = j-1
print(‘col_start’,col_start)
将车牌非字符区域变成纯黑色
for i in range(LICENSE_HIGH):
if i > row_end or i < row_start:
gray[i] = 0
for j in range(LICENSE_WIDTH):
if j < col_start or j > col_end:
gray[:,j] = 0
cv_show(“res”,gray)
plate_binary = gray.copy()
for i in range(LICENSE_WIDTH-1,LICENSE_WIDTH):
gray[:,i] = 0
字符细化操作
specify = cv2.erode(gray,kernel,iterations=2)
cv_show(“specify”,specify)
plate_specify = specify.copy()
#---------------------------垂直投影法切割字符-------------------------
lst_heise = [] #记录每一列中的白色像素点数量
for i in range(LICENSE_WIDTH):
pc = 0
for j in range(LICENSE_HIGH):
if specify[j][i] == 255:
pc = pc + 1
lst_heise.append(pc)
print(“lst_heise”,lst_heise)
a = [0 for i in range(0,LICENSE_WIDTH)]
for j in range(0, LICENSE_WIDTH): # 遍历一列
for i in range(0, LICENSE_HIGH): # 遍历一行
if specify[i, j] == 255: # 如果该点为白点
总结
无论是哪家公司,都很重视高并发高可用的技术,重视基础,重视JVM。面试是一个双向选择的过程,不要抱着畏惧的心态去面试,不利于自己的发挥。同时看中的应该不止薪资,还要看你是不是真的喜欢这家公司,是不是能真的得到锻炼。其实我写了这么多,只是我自己的总结,并不一定适用于所有人,相信经过一些面试,大家都会有这些感触。
最后我整理了一些面试真题资料,技术知识点剖析教程,还有和广大同仁一起交流学习共同进步,还有一些职业经验的分享。
适用于所有人,相信经过一些面试,大家都会有这些感触。
最后我整理了一些面试真题资料,技术知识点剖析教程,还有和广大同仁一起交流学习共同进步,还有一些职业经验的分享。
[外链图片转存中…(img-UxYViBjB-1715675982652)]