最后
如果觉得本文对你有帮助的话,不妨给我点个赞,关注一下吧!
在 Spring Cloud 应用启动阶段,会主动从 Nacos Server 端获取对应的数据,并将获取到的数据转换成 PropertySource 且注入到 Environment 的PropertySources 属性中,所以使用@Value 注解也能直接获取 Nacos Server 端配置的内容。
- 动态刷新
Nacos Config Starter 默认为所有获取数据成功的 Nacos 的配置项添加了监听功能,在监听到服务端配置发生变化时会实时触发org.springframework.cloud.context.refresh.ContextRefresher 的 refresh 方法 。
如果需要对 Bean 进行动态刷新,请参照 Spring 和 Spring Cloud 规范。推荐给类添加@RefreshScope 或 @ConfigurationProperties 注解
- 加载多配置文件
spring.cloud.nacos.config.server-addr=127.0.0.1:8848 spring.cloud.nacos.config.namespace=31098de9-fa28-41c9-b0bd-c754ce319ed4 spring.cloud.nacos.config.ext-config[0].data-id=gulimall-datasource.yml spring.cloud.nacos.config.ext-config[0].refresh=false
spring.cloud.nacos.config.ext-config[0].group=dev
- 拆分
application.yml
,Nacos创建不同配置
application.yml
- 与数据源相关配置
- 与MyBatis相关配置
- 其他配置
- 拆分后效果
- 加载
通过一下语句配置组,每个选项有id、group、是否动态刷新三个配置选项
spring.cloud.nacos.config.ext-config[0].data-id=datasource.yml
spring.cloud.nacos.config.ext-config[0].group=dev
spring.cloud.nacos.config.ext-config[0].refresh=true
- 注释掉application.yml后仍可正常使用
启动时会加载三个配置
-
总结
-
微服务任何配置信息,任何配置文件都可以放在配置中心中
-
只需要在
bootstrap.properties
说明加载配置中心中哪些配置文件即可。 -
@Value
、@ConfigurationProperties
SpringBoot任何方式从配置文件中获取值,都可以使用
配置中心中有的优先使用配置中心的值
4. SpringCloud Alibaba-Sentinel
4.1 简介
官方文档:[https://github.com/alibaba/Sentinel/wiki/%E4%BB%8B%E7%BB%8D ]( )
项目地址:https://github.com/alibaba/Sentinel
随着微服务的流行,服务和服务之间的稳定性变得越来越重要。Sentinel 以流量为切入点, 从流量控制、熔断降级、系统负载保护等多个维度保护服务的稳定性。
Sentinel 具有以下特征:
-
丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。
-
完备的实时监控:Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下规模的集群的汇总运行情况。
-
广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架/库的整合模块,例如与 Spring Cloud、Dubbo、gRPC 的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel。
-
完善的 SPI 扩展点:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等。
Sentinel 分为两个部分:
-
核心库(Java 客户端)不依赖任何框架/库,能够运行于所有 Java 运行时环境,同时对 Dubbo / Spring Cloud 等框架也有较好的支持。
-
控制台(Dashboard)基于 Spring Boot 开发,打包后可以直接运行,不需要额外的Tomcat 等应用容器。
Sentinel 基本概念:
- 资源
资源是 Sentinel 的关键概念。它可以是 Java 应用程序中的任何内容,例如,由应用程序提供的服务,或由应用程序调用的其它应用提供的服务,甚至可以是一段代码。在接下来的文档中,我们都会用资源来描述代码块
只要通过Sentinel API定义的代码,就是资源,能够被Sentine保护起来。大部分情况下, 可以使用方法签名,URL,甚至服务名称作为资源名来标示资源。
- 规则
围绕资源的实时状态设定的规则,可以包括流量控制规则、熔断降级规则以及系统保护规则。所有规则可以动态实时调整。
4.2 Hystrix 与 Sentinel 比较
| 功能 | Sentinel | Hystrix |
| — | — | — |
| 隔离策略 | 信号量隔离(并发线程数限流) | 线程池隔离/信号量隔离 |
| 熔断降级策略 | 基于响应时间、异常比率、异常数 | 基于异常比率 |
| 实时统计实现 | 滑动窗口(LeapArray) | 滑动窗口(基于RxJava) |
| 动态规则设置 | 支持多种数据源 | 支持多种数据源 |
| 扩展性 | 多个扩展点 | 插件形式 |
| 基于注解的支持 | 支持 | 支持 |
| 限流 | 基于QPS,支持基于调用关系的限流 | 有限的支持 |
| 流量整形 | 支持预热模式、匀速器模式、预热排队模式 | 不支持 |
| 系统自适应保护 | 支持 | 不支持 |
| 控制台 | 可配置规则、查看秒级监控、机器发现等 | 简单的监控查看 |
4.3 整合 Feign+Sentinel 测试熔断降级
[https://github.com/alibaba/Sentinel/wiki/%E4%B8%BB%E9%A1%B5]( )
什么是熔断降级
除了流量控制以外,降低调用链路中的不稳定资源也是 Sentinel 的使命之一。由于调用关系的复杂性,如果调用链路中的某个资源出现了不稳定,最终会导致请求发生堆积。
Sentinel 和 Hystrix 的原则是一致的: 当检测到调用链路中某个资源出现不稳定的表现,例如请求响应时间长或异常比例升高的时候,则对这个资源的调用进行限制,让请求快速失败,避免影响到其它的资源而导致级联故障。
熔断降级设计理念
在限制的手段上,Sentinel 和 Hystrix 采取了完全不一样的方法。
Hystrix 通过线程池隔离
的方式,来对依赖(在 Sentinel 的概念中对应 资源)进行了隔离。这样做的好处是资源和资源之间做到了最彻底的隔离。缺点是除了增加了线程切换的成本(过多的线程池导致线程数目过多),还需要预先给各个资源做线程池大小的分配。
Sentinel对这个问题采取了两种手段:
- 通过并发线程数进行限制
和资源池隔离的方法不同,Sentinel 通过限制资源并发线程的数量,来减少不稳定资源对其它资源的影响。这样不但没有线程切换的损耗,也不需要您预先分配线程池的大小。当某个资源出现不稳定的情况下,例如响应时间变长,对资源的直接影响就是会造成线程数的逐步堆积。当线程数在特定资源上堆积到一定的数量之后,对该资源的新请求就会被拒绝。堆积的线程完成任务后才开始继续接收请求。
- 通过响应时间对资源进行降级
除了对并发线程数进行控制以外,Sentinel 还可以通过响应时间来快速降级不稳定的资源。当依赖的资源出现响应时间过长后,所有对该资源的访问都会被直接拒绝,直到过了指定的时间窗口之后才重新恢复。
测试整合
[https://github.com/alibaba/spring-cloud-alibaba/blob/master/spring-cloud-alibaba-examples/se ntinel-example/sentinel-feign-example/readme-zh.md]( )
- 引入依赖
org.springframework.cloud
spring-cloud-starter-openfeign
com.alibaba.cloud
spring-cloud-starter-alibaba-sentinel
- 使用Nacos注册中心
com.alibaba.cloud
spring-cloud-starter-alibaba-nacos-discovery
- 定义 fallback 实现,在服务消费者中,实现 feign 远程接口,接口的实现方法即为调用错误的容错方法
public class OrderFeignServiceFallBack implements OrderFeignService {
@Override
public Resp getOrderInfo(String orderSn) {
return null;
}
}
- 定义 fallbackfactory 并放在容器中
@Component
public class OrderFeignFallbackFactory implements
FallbackFactory {
@Override
public OrderFeignServiceFallBack create(Throwable throwable) {
return new OrderFeignServiceFallBack(throwable);
}
}
- 改造 fallback 类接受异常并实现容错方法
public class OrderFeignServiceFallBack implements OrderFeignService {
private Throwable throwable;
public OrderFeignServiceFallBack(Throwable throwable){
this.throwable = throwable;
}
@Override
public Resp getOrderInfo(String orderSn) {
return Resp.fail(new OrderVo());
}
}
- 远程接口配置 feign 客户端容错
@FeignClient(value = “gulimall-oms”,fallbackFactory = OrderFeignFallbackFactory.class)
public interface OrderFeignService {
@GetMapping(“/oms/order/bysn/{orderSn}”)
public Resp getOrderInfo(@PathVariable(“orderSn”) String orderSn);
}
- 开启 sentinel 代理 feign 功能;在 application.properties 中配置
feign.sentinel.enabled=true
测试熔断效果。当远程服务出现问题,会自动调用回调方法返回默认数据,并且更快的容错方式
- 使用@SentinelResource,并定义 fallback
@SentinelResource(value = “order”,fallback = “e”)
Fallback 和原方法签名一致,但是最多多一个 Throwable 类型的变量接受异常。
https://github.com/alibaba/Sentinel/wiki/%E6%B3%A8%E8%A7%A3%E6%94%AF%E6%8C%81
需要给容器中配置注解切面
@Bean
public SentinelResourceAspect sentinelResourceAspect() {
return new SentinelResourceAspect();
}
在控制台添加降级策略
- 测试降级效果
当远程服务停止,前几个服务会尝试调用远程服务,满足降级策略条件以后则不会再尝试调用远程服务
4.4 整合 Sentinel 测试限流(流量控制)
https://github.com/alibaba/spring-cloud-alibaba/blob/master/spring-cloud-alibaba-examples/sentinel-example/sentinel-core-example/readme-zh.md
什么是流量控制
流量控制在网络传输中是一个常用的概念,它用于调整网络包的发送数据。然而,从系统稳 定性角度考虑,在处理请求的速度上,也有非常多的讲究。任意时间到来的请求往往是随机 不可控的,而系统的处理能力是有限的。我们需要根据系统的处理能力对流量进行控制。Sentinel 作为一个调配器,可以根据需要把随机的请求调整成合适的形状,如下图所示:
流量控制设计理念
流量控制有以下几个角度:
-
资源的调用关系,例如资源的调用链路,资源和资源之间的关系;
-
运行指标,例如 QPS、线程池、系统负载等;
-
控制的效果,例如直接限流、冷启动、排队等。
Sentinel 的设计理念是让您自由选择控制的角度,并进行灵活组合,从而达到想要的效果。
- 引入 Sentinel starter
com.alibaba.cloud
spring-cloud-starter-alibaba-sentinel
- 接入限流埋点
- HTTP 埋点
Sentinel starter 默认为所有的 HTTP 服务提供了限流埋点,如果只想对 HTTP 服务进行限流,那么只需要引入依赖,无需修改代码。
- 自定义埋点
如果需要对某个特定的方法进行限流或降级,可以通过 @SentinelResource 注解来完成限流的埋点,示例代码如下:
@SentinelResource(“resource”) public String hello() {
return “Hello”;
}
- 当然也可以通过原始的 SphU.entry(xxx) 方法进行埋点, 可以参见 [Sentinel 文档]( )
- 配置限流规则
Sentinel 提供了两种配置限流规则的方式:代码配置 和 控制台配置。
- 通过代码来实现限流规则的配置。一个简单的限流规则配置示例代码如下,更多限流规 则配置详情请参考 [Sentinel 文档]( )。
List rules = new ArrayList(); FlowRule rule = new FlowRule(); rule.setResource(str);
// set limit qps to 10 rule.setCount(10);
rule.setGrade(RuleConstant.FLOW_GRADE_QPS); rule.setLimitApp(“default”);
rules.add(rule);
FlowRuleManager.loadRules(rules);
- 通过控制台进行限流规则配置
-
启动控制台
执行 Java 命令 java -jar sentinel-dashboard.jar 完成 Sentinel 控制台的启动。 控制台默认的监听端口为 8080
- 启动应用并配置
增加配置,在应用的 /src/main/resources/application.properties 中添加基本配置信息
spring.application.name=sentinel-example
server.port=18083
spring.cloud.sentinel.transport.dashboard=localhost:8080
- 控制台配置限流规则并验证
访问 http://localhost:8080 页面
如果您在控制台没有找到应用,请调用一下进行了 Sentinel 埋点的 URL 或方法,因为Sentinel 使用了 lazy load 策略。
任意发送请求,可以在簇点链路里面看到刚才的请求,可以对请求进行流控;
- 自定义流控响应
@Configuration
public class SentineConfig{
public SentineConfig(){
WebCallbackManager.setUrlBlockHandle(new UrlBlockHandler(){
@Overide
public void blocked(HttpServletRequest request,HttpServletResponse response,BlockException ex) throws IOException{
response.getWriter().write(“limited”);
}
})
}
}
- 持久化流控规则
默认的流控规则是保存在项目的内存中,项目停止再启动,流控规则就是失效。我们可以持久化保存规则 ;
生产环境使用模式:
我们推荐通过控制台设置规则后将规则推送到统一的规则中心,客户端实现ReadableDataSource接口端监听规则中心实时获取变更
解决方案:
DataSource 扩展常见的实现方式有:
-
拉模式:客户端主动向某个规则管理中心定期轮询拉取规则,这个规则中心可以是RDBMS、文件,甚至是 VCS 等。这样做的方式是简单,缺点是无法及时获取变更;
-
推模式:则中心统一推送,客户端通过注册监听器的方式时刻监听变化,比如使用Nacos、Zookeeper 等配置中心。这种方式有更好的实时性和一致性保证。
推模式:使用Nacos配置规则
- 引入依赖
com.alibaba.csp
sentinel-datasource-nacos
1.6.3
- 编写配置类
@Configuration
public class SentinelConfig {
public SentinelConfig() {
//1、加载流控策略
ReadableDataSource<String, List> flowRuleDataSource = new NacosDataSource<>(“127.0.0.1:8848”, “demo”, “sentinel”, source -> JSON.parseObject(source, new TypeReference<List>() {
}));
FlowRuleManager.register2Property(flowRuleDataSource.getProperty());
//2、加载降级策略
ReadableDataSource<String, List> degradeRuleDataSource = new NacosDataSource<>(“127.0.0.1:8848”, “demo”, “sentinel”, source -> JSON.parseObject(source, newTypeReference < List < DegradeRule >> () {
}));
DegradeRuleManager.register2Property(degradeRuleDataSource.getProperty());
//3、加载系统规则
ReadableDataSource<String, List> systemRuleDataSource = new NacosDataSource<>(“127.0.0.1:8848”, “demo”, “sentinel”, source -> JSON.parseObject(source, newTypeReference < List < SystemRule >> () {
}));
SystemRuleManager.register2Property(systemRuleDataSource.getProperty());
//4、加载权限策略
ReadableDataSource<String, List> authorityRuleDataSource = new NacosDataSource<>(“127.0.0.1:8848”, “demo”, “sentinel”,
source -> JSON.parseObject(source, new
TypeReference<List>() {
}));
AuthorityRuleManager.register2Property(authorityRuleDataSource.getProperty(
));
}
}
参照 https://github.com/alibaba/Sentinel/wiki/Dynamic-Rule-Configuration 查看更多控制规则
API 的方式,可以直接变为配置方式;在 application.properties 中配置
spring.cloud.sentinel.datasource.ds.nacos.server-addr=127.0.0. 1:8848
spring.cloud.sentinel.datasource.ds.nacos.data-id=sentinel
spring.cloud.sentinel.datasource.ds.nacos.group-id=demo
spring.cloud.sentinel.datasource.ds.nacos.rule-type=flow
spring.cloud.sentinel.datasource.ds1.nacos.server-addr=127.0.0.1:8848
spring.cloud.sentinel.datasource.ds1.nacos.data-id=sentinel
spring.cloud.sentinel.datasource.ds1.nacos.group-id=demo
spring.cloud.sentinel.datasource.ds1.nacos.rule-type=system
ds,ds1 是随便写的。
- 在 nacos 中创建 dataId,并使用json 格式
- 添加一条流控规则测试
[
{
“resource”: “/ums/member/list”, “limitApp”: “default”,
“grade”: 1,
“count”: 5,
“strategy”: 0,
“controlBehavior”: 0, “clusterMode”: false
}
]
配 置 含 义 说 明 : https://github.com/alibaba/Sentinel/wiki/%E6%B5%81%E9%87%8F%E6%8E%A7%E5%88%B6
-
resource:资源名,即限流规则的作用对象
-
count: 限流阈值
-
grade: 限流阈值类型(QPS 或并发线程数)
-
limitApp: 流控针对的调用来源,若为 default 则不区分调用来源
-
strategy: 调用关系限流策略
-
controlBehavior: 流量控制效果(直接拒绝、Warm Up、匀速排队)
- 系统规则,降级规则等均可添加
[
{
“resource”: “/ums/member/list”, “limitApp”: “default”,
“grade”: 1,
“count”: 5,
“strategy”: 0,
“controlBehavior”: 0, “clusterMode”: false
},
{
“highestSystemLoad”: -1,
“highestCpuUsage”: 0.99,
“qps”: 2,
“avgRt”: 10,
“maxThread”: 10
}
]
- 最终效果
Sentinel 控制台改变流控规则,不能推送到 nacos 中,Nacos 中改变流控规则可以实时观察到变化
5.1 简介
6.1 简介
对象存储服务(Object Storage Service,OSS)是一种海量、安全、低成本、高可靠的云存储服务,适合存放任意类型的文件。容量和处理能力弹性扩展,多种存储类型供选择,全面优化存储成本。
6.2 使用步骤
- 开通阿里云对象存储服务
https://www.aliyun.com/product/oss
- 引入SpringCloud Alibaba-OSS
com.alibaba.cloud
spring-cloud-alicloud-oss
- 配置阿里云oss 相关的账号信息
spring:
cloud:
alicloud:
oss:
endpoint: oss-cn-shanghai.aliyuncs.com
access-key: xxxxxx
secret-key: xxxxxx
注意:必须申请 RAM 账号信息,并且分配 OSS 操作权限
- 测试使用OssClient 上传
@Autowired OSSClient ossClient;
@Test
public void contextLoads2()throws FileNotFoundException{
InputStream inputStream=new FileInputStream(“C:\Users\lfy\Pictures\bug.jpg”);ossClient.putObject(“gulimall”,“aaa/bug222.jpg”,inputStream);System.out.println(“ok”);
}
========================================================================
1.1 简介
Feign 是一个声明式的 HTTP 客户端,它的目的就是让远程调用更加简单。Feign 提供了 HTTP 请求的模板,通过编写简单的接口和插入注解,就可以定义好 HTTP 请求的参数、格式、地址等信息。
Feign 整合了 Ribbon(负载均衡)和 Hystrix(服务熔断),可以让我们不再需要显式地使用这两个组件。
SpringCloudFeign 在 NetflixFeign 的基础上扩展了对 SpringMVC 注解的支持,在其实现下,我们只需创建一个接口并用注解的方式来配置它,即可完成对服务提供方的接口绑定。简化了SpringCloudRibbon 自行封装服务调用客户端的开发量。
1.2 使用
- 远程声明
gulimall-coupon
- 引入依赖
spring-cloud-starter-openfeign
org.springframework.cloud
spring-cloud-starter-openfeign
- 声明远程接口
coupon/coupon/member/list
- 远程调用
gulimall-member
- 引入open-feign
- 编写一个接口,告诉SpringCloud该接口需要调用远程服务
- 新建feign包,存放所有的远程调用
com/atguigu/gulimall/member/feign
- feign目录下新建
CouponFeighService
,调用gulimall-coupon
远程接口
- 使用
@FeignClient("调用服务名称")
注解声明接口为远程客户端
注意:调用服务名称为在服务注册中心中的服务名称
- 声明接口的每一个方法都是调用哪个远程服务的哪个请求。将远程服务中的完整路由与函数名称在
CouponFeignService
中进行声明。
- 开启远程调用功能
@EnableFeignClients(basePackages = “com.atguigu.gulimall.member.feign”)
- 当调用
CounponFeignService
接口中的memberCoupons()
方法时候,就会先去注册中心找gulimall-coupon
服务,再去找对应的/coupon/coupon/member/list
方法。
- 编写测试请求
在MemberController中写一个测试接口,调用远程服务接口中的方法,即可实现远程调用。
启动服务后,访问http://localhost:8000/member/member/coupons可以查看到数据
1.3 原理
2.1 简介
网关作为流量的入口,常用功能包括路由转发、权限校验、限流控制等。而 springcloud gateway作为 SpringCloud 官方推出的第二代网关框架,取代了 Zuul 网关。
网关提供 API 全托管服务,丰富的 API 管理功能,辅助企业管理大规模的 API,以降低管理成本和安全风险,包括协议适配、协议转发、安全策略、防刷、流量、监控日志等功能。
Spring Cloud Gateway 旨在提供一种简单而有效的方式来对 API 进行路由,并为他们提供切面,例如:安全性,监控/指标 和弹性等。
官方文档地址:
Spring Cloud Gateway 特点:
-
基于 Spring5,支持响应式编程和 SpringBoot2.0
-
支持使用任何请求属性进行路由匹配
-
特定于路由的断言和过滤器
-
集成 Hystrix 进行断路保护
-
集成服务发现功能
-
易于编写 Predicates 和 Filters
-
支持请求速率限制
-
支持路径重写
思考:为什么使用 API 网关?
API 网关出现的原因是微服务架构的出现,不同的微服务一般会有不同的网络地址,而外部客户端可能需要调用多个服务的接口才能完成一个业务需求,如果让客户端直接与各个微服务通信,会有以下的问题:
-
客户端会多次请求不同的微服务,增加了客户端的复杂性。
-
存在跨域请求,在一定场景下处理相对复杂。
-
认证复杂,每个服务都需要独立认证。
-
难以重构,随着项目的迭代,可能需要重新划分微服务。例如,可能将多个服务合并成一个或者将一个服务拆分成多个。如果客户端直接与微服务通信,那么重构将 会很难实施。
-
某些微服务可能使用了防火墙 / 浏览器不友好的协议,直接访问会有一定的困难。
以上这些问题可以借助 API 网关解决。API 网关是介于客户端和服务器端之间的中间层, 所有的外部请求都会先经过 API 网关这一层。也就是说,API 的实现方面更多的考虑业务逻辑,而安全、性能、监控可以交由 API 网关来做,这样既提高业务灵活性又不缺安全性:使用 API 网关后的优点如下:
-
易于监控。可以在网关收集监控数据并将其推送到外部系统进行分析。
-
易于认证。可以在网关上进行认证,然后再将请求转发到后端的微服务,而无须在每个微服务中进行认证。
-
减少了客户端与各个微服务之间的交互次数。
2.2 核心概念
-
路由。路由是网关最基础的部分,路由信息有一个 ID、一个目的 URL、一组断言和一组Filter 组成。如果断言路由为真,则说明请求的 URL 和配置匹配
-
断言。Java8 中的断言函数。Spring Cloud Gateway 中的断言函数输入类型是 Spring5.0 框架中的 ServerWebExchange。Spring Cloud Gateway 中的断言函数允许开发者去定义匹配来自于 http request 中的任何信息,比如请求头和参数等。
-
过滤器。一个标准的 Spring webFilter。Spring cloud gateway 中的 filter 分为两种类型的Filter,分别是 Gateway Filter 和 Global Filter。过滤器 Filter 将会对请求和响应进行修改处理
2.3 工作原理
客户端发送请求给网关,弯管 HandlerMapping 判断是否请求满足某个路由,满足就发给网关的 WebHandler。这个 WebHandler 将请求交给一个过滤器链,请求到达目标服务之前,会执行所有过滤器的 pre 方法。请求到达目标服务处理之后再依次执行所有过滤器的post 方法。
一句话:满足某些断言(predicates)就路由到指定的地址(uri),使用指定的过滤器(filter)
即:API请求抵达网关,网关利用断言判断API请求是否满足某个路由,如果符合,就按照该路由规则匹配到指定地方,匹配之前会经过一系列过滤器。
2.4 使用
-
helloworld
-
创建网关项目,引入网关
org.springframework.cloud
spring-cloud-starter-gateway
- 编写网关配置文件
spring:
cloud:
gateway:
routes:
- id: add_request_parameter_route
uri: https://example.org
predicates:
- Query=baz
filters:
- AddRequestParameter=foo, bar
- 注意
-
各种 Predicates 同时存在于同一个路由时,请求必须同时满足所有的条件才被这个路由匹配。
-
一个请求满足多个路由的谓词条件时,请求只会被首个成功匹配的路由转发
-
测试:可以使用 postman 进行测试网关的路由功能
-
断言(Predicates)
-
过滤器(filters)
-
GatewayFilter
-
GlobalFilter
2.5 创建网关项目
- 新建Module,使用Spring初始化向导
- 创建完成后,将
gulimall-common
添加到网管项目依赖中
网关需要需要把自己注册到注册中心中,同时也需要发现其他服务所在位置。这样服务到网关后,可以找到指定位置跳转。
-
修改Spring Boot版本为
2.1.8.RELEASE
。Spring Cloud版本为Greenwich.SR3
-
配置和测试网关
- 开启服务注册发现
- 配置Nacos的注册中心地址
- 配置网关端口为88端口
-
配置Nacos的配置中心地址
-
Nacos新建
gateway
命名空间
- gateway命名空间中新增DateID(gulimall-gateway.yml)
spring:
application:
name: gulimall-gateway
-
发布配置
-
项目配置文件中指定配置项目名称、中心地址、命名空间
spring.application.name=gulimall-gateway
spring.cloud.nacos.config.server-addr=127.0.0.1:8848
spring.cloud.nacos.config.namespace=d6592a0a-7c70-4539-a450-dbcf357406ea
- 启动网关测试报错
没有找到数据源配置信息
原因:在引入gulimall-common
依赖的时候,自动引入mybatis依赖,但是王贯中暂时没有使用数据库,因此不需要加入数据源。
解决:排除数据源依赖
@SpringBootApplication(exclude = {DataSourceAutoConfiguration.class})
排除数据源依赖后正常启动
2.6 测试
测试需求,在88端口拼接地址,如果地址为http://localhost:88/?url=baidu
则转到百度;如果地址为http://localhost:88/?url=qq
则转到qq
解决:需要对网关进行配置。
暂时在application.yml
中进行配置,服务正式上线后可以将所有配置转到配置中心。
配置spring.cloud.gateway.routes
。routes
为数组,在yml中,-
代表数组元素。predicates
为断言规则数组。Query
为匹配参数,后面为参数名,参数值
,参数值可以是正则表达式。
spring:
cloud:
gateway:
routes:
- id: test_route # 唯一标识ID
uri: https://www.baidu.com # 跳转路径
predicates: # 断言规则
-
Query=url,baidu
-
id: test_route
uri: https://www.qq.com
predicates:
- Query=url,qq
配置好后访问对应路径即可实现需求
3.1 为什么用
微服务架构是一个分布式架构,它按业务划分服务单元,一个分布式系统往往有很多个服务单元。由于服务单元数量众多,业务的复杂性,如果出现了错误和异常,很难去定位。主要体现在,一个请求可能需要调用很多个服务,而内部服务的调用复杂性,决定了问题难以定位。所以微服务架构中,必须实现分布式链路追踪,去跟进一个请求到底有哪些服务参与, 参与的顺序又是怎样的,从而达到每个请求的步骤清晰可见,出了问题,很快定位。
2021年Java中高级面试必备知识点总结
在这个部分总结了2019年到目前为止Java常见面试问题,取其面试核心编写成这份文档笔记,从中分析面试官的心理,摸清面试官的“套路”,可以说搞定90%以上的Java中高级面试没一点难度。
本节总结的内容涵盖了:消息队列、Redis缓存、分库分表、读写分离、设计高并发系统、分布式系统、高可用系统、SpringCloud微服务架构等一系列互联网主流高级技术的知识点。
目录:
(上述只是一个整体目录大纲,每个点里面都有如下所示的详细内容,从面试问题——分析面试官心理——剖析面试题——完美解答的一个过程)
部分内容:
对于每一个做技术的来说,学习是不能停止的,小编把2019年到目前为止Java的核心知识提炼出来了,无论你现在是处于什么阶段,如你所见,这份文档的内容无论是对于你找面试工作还是提升技术广度深度都是完美的。
不想被后浪淘汰的话,赶紧搞起来吧,高清完整版一共是888页,需要的话可以点赞+关注
。
routes为数组,在yml中,
-代表数组元素。
predicates为断言规则数组。
Query为匹配参数,后面为
参数名,参数值`,参数值可以是正则表达式。
spring:
cloud:
gateway:
routes:
- id: test_route # 唯一标识ID
uri: https://www.baidu.com # 跳转路径
predicates: # 断言规则
-
Query=url,baidu
-
id: test_route
uri: https://www.qq.com
predicates:
- Query=url,qq
配置好后访问对应路径即可实现需求
3.1 为什么用
微服务架构是一个分布式架构,它按业务划分服务单元,一个分布式系统往往有很多个服务单元。由于服务单元数量众多,业务的复杂性,如果出现了错误和异常,很难去定位。主要体现在,一个请求可能需要调用很多个服务,而内部服务的调用复杂性,决定了问题难以定位。所以微服务架构中,必须实现分布式链路追踪,去跟进一个请求到底有哪些服务参与, 参与的顺序又是怎样的,从而达到每个请求的步骤清晰可见,出了问题,很快定位。
2021年Java中高级面试必备知识点总结
在这个部分总结了2019年到目前为止Java常见面试问题,取其面试核心编写成这份文档笔记,从中分析面试官的心理,摸清面试官的“套路”,可以说搞定90%以上的Java中高级面试没一点难度。
本节总结的内容涵盖了:消息队列、Redis缓存、分库分表、读写分离、设计高并发系统、分布式系统、高可用系统、SpringCloud微服务架构等一系列互联网主流高级技术的知识点。
目录:
[外链图片转存中…(img-vBS286lW-1715614394787)]
(上述只是一个整体目录大纲,每个点里面都有如下所示的详细内容,从面试问题——分析面试官心理——剖析面试题——完美解答的一个过程)
[外链图片转存中…(img-oVNpjtqk-1715614394787)]
部分内容:
[外链图片转存中…(img-fTv1x05Z-1715614394788)]
[外链图片转存中…(img-XeH1Kvo1-1715614394788)]
[外链图片转存中…(img-LhceiNoD-1715614394788)]
对于每一个做技术的来说,学习是不能停止的,小编把2019年到目前为止Java的核心知识提炼出来了,无论你现在是处于什么阶段,如你所见,这份文档的内容无论是对于你找面试工作还是提升技术广度深度都是完美的。
不想被后浪淘汰的话,赶紧搞起来吧,高清完整版一共是888页,需要的话可以点赞+关注