【Java实战系列】「技术盲区」Double与Float的坑与解决办法以及BigDecimal的取而代之(1)

写在最后

为了这次面试,也收集了很多的面试题!

以下是部分面试题截图

Java程序员秋招三面蚂蚁金服,我总结了所有面试题,也不过如此

本文已被CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】收录

需要这份系统化的资料的朋友,可以点击这里获取

// 打印:8.4552632E7 纳尼?不是 +1了吗?

// 打印:8.4552632E7 纳尼?不是 +1了吗?

// 打印:8.4552632E7 纳尼?不是 +1了吗?

// 打印:8.4552632E7 纳尼?不是 +1了吗?

// 打印:8.4552632E7 纳尼?不是 +1了吗?

所以说用浮点数(包括double和float)处理问题有非常多隐晦的坑在等着咱们!

分析原因出处

我们就以第一个典型现象为例来分析一下:

System.out.println( 1f == 0.99999999f );

直接用代码去比较1和0.99999999,居然打印出true!这说明了什么?这说明了计算机压根区分不出来这两个数。这是为什么呢?

深入分析

输入的这两个浮点数只是我们人类肉眼所看到的具体数值,是我们通常所理解的十进制数,但是计算机底层在计算时可不是按照十进制来计算的,学过计算机组成原理的人都知道,计算机底层最终都是基于像010100100100110011011这种0、1二进制来完成的。

将这两个十进制浮点数转化到二进制,直接给出结果(把它转换到IEEE 754 Single precision 32-bit,也就float类型对应的精度)

1.0(十进制)

00111111 10000000 00000000 00000000(二进制)

0x3F800000(十六进制)

0.99999999(十进制)

00111111 10000000 00000000 00000000(二进制)

0x3F800000(十六进制)

这两个十进制浮点数的底层二进制表示是一样的,怪不得==的判断结果返回true!

但是1f == 0.9999999f返回的结果是符合预期的,打印false,我们也把它们转换到二进制模式下看看情况:

1.0(十进制)

00111111 10000000 00000000 00000000(二进制)

0x3F800000(十六进制)

0.9999999(十进制)

00111111 01111111 11111111 11111110(二进制)

0x3F7FFFFE(十六进制)

它俩的二进制数字表示确实不一样,这是理所应当的结果。

那么为什么0.99999999的底层二进制表示竟然是:00111111 10000000 00000000 00000000呢?

这不明明是浮点数1.0的二进制表示吗?主要要分一下浮点数的精度问题了。

浮点数的精度问题!

学过 《计算机组成原理》 这门课的小伙伴应该都知道,浮点数在计算机中的存储方式遵循IEEE 754 浮点数计数标准,可以用科学计数法表示为:

只要给出:符号(S)、阶码部分(E)、尾数部分(M) 这三个维度的信息,一个浮点数的表示就完全确定下来了,所以float和double这两种浮点数在内存中的存储结构如下所示:

符号部分(S)

0-正 1-负

阶码部分(E)(指数部分):

对于float型浮点数,指数部分8位,考虑可正可负,因此可以表示的指数范围为-127 ~ 128

对于double型浮点数,指数部分11位,考虑可正可负,因此可以表示的指数范围为-1023 ~ 1024

尾数部分(M):

浮点数的精度是由尾数的位数来决定的:

  • 对于float型浮点数,尾数部分23位,换算成十进制就是 2^23=8388608,所以十进制精度只有6 ~ 7位;

  • 对于double型浮点数,尾数部分52位,换算成十进制就是 2^52 = 4503599627370496,所以十进制精度只有15 ~ 16位

对于上面的数值0.99999999f,很明显已经超过了float型浮点数据的精度范围,出问题也是在所难免的。

精度问题如何解决

涉及商品金额、交易值、货币计算等这种对精度要求很高的场景该怎么办呢?

方法一:用字符串或者数组解决多位数问题

方法二:Java的大数类是个好东西

JDK早已为我们考虑到了浮点数的计算精度问题,因此提供了专用于高精度数值计算的大数类来方便我们使用。Java的大数类位于java.math包下:可以看到,常用的BigInteger 和 BigDecimal就是处理高精度数值计算的利器。

BigDecimal num3 = new BigDecimal( Double.toString( 1.0f ) );

BigDecimal num4 = new BigDecimal( Double.toString( 0.99999999f ) );

System.out.println( num3 == num4 ); // 打印 false

BigDecimal num1 = new BigDecimal( Double.toString( 0.2 ) );

BigDecimal num2 = new BigDecimal( Double.toString( 0.7 ) );

// 加

System.out.println( num1.add( num2 ) ); // 打印:0.9

// 减

System.out.println( num2.subtract( num1 ) ); // 打印:0.5

// 乘

System.out.println( num1.multiply( num2 ) ); // 打印:0.14

// 除

System.out.println( num2.divide( num1 ) ); // 打印:3.5

当然了,像BigInteger 和 BigDecimal这种大数类的运算效率肯定是不如原生类型效率高,代价还是比较昂贵的,是否选用需要根据实际场景来评估。

实际案例场景

使用Double计算问题

如果需要记录一个16位整数且保留两位小数点的金额数值,于是使用Double类型来接收金额,但在最后进行金额总和统计后,得出的金额数值小数点后面多出了小数位,且多出的小数位不为0,简直要疯了,每一笔的金额都是两位小数点,但最后统计的总金额数值却是多位小数点的。

double和float类型主要用于科学计算与工程计算而设计的,用于二进制浮点计算,但我们在程序中写的时候往往都是写的10进制,而这个10进制的小数,对于计算机内部而言,是无法用二进制的小数来精确表达出来的,只能表示出一个“不精确性”或者说“近似性”的结果,而用这个近似性的结果进行计算得出的数据, 也往往与我们心中想要的数据不一样,所以如果是想进行金额或其他类似的浮点型数值计算,不要使用double或float,推荐大家使用BigDecimal来进行运算。

BigDecimal的工具使用

BigDecimal是Java在java.math包中提供的API类,它可以用来对超过16位有效位的数进行精确的运算和处理。

面试资料整理汇总

成功从小公司跳槽进蚂蚁定级P7,只因刷了七遍这些面试真题

成功从小公司跳槽进蚂蚁定级P7,只因刷了七遍这些面试真题

这些面试题是我朋友进阿里前狂刷七遍以上的面试资料,由于面试文档很多,内容更多,没有办法一一为大家展示出来,所以只好为大家节选出来了一部分供大家参考。

面试的本质不是考试,而是告诉面试官你会做什么,所以,这些面试资料中提到的技术也是要学会的,不然稍微改动一下你就凉凉了

在这里祝大家能够拿到心仪的offer!

本文已被CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】收录

需要这份系统化的资料的朋友,可以点击这里获取

,所以,这些面试资料中提到的技术也是要学会的,不然稍微改动一下你就凉凉了

在这里祝大家能够拿到心仪的offer!

本文已被CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】收录

需要这份系统化的资料的朋友,可以点击这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值