2024年最新数值分析-----不动点迭代和牛顿迭代(Python)

本文介绍了不动点迭代法的基本思想和案例,通过Python实现展示了迭代过程。接着详细阐述了牛顿迭代法,同样提供Python代码示例,演示如何在给定区间内求解方程的根。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.2 Newton迭代法

2 不动点迭代


2.1 基本思想

由f(x)=0==>x=φ(x)

若要求 x*满足 f(x*)=0,则 x*=φ(x*);反之亦然。则称 x*为函数 φ(x)的一个不动点。

选择一个初始近似值 x0,将它代入上式右端,即可求

x1=φ(x0)

可以如此反复迭代计算得到:   xk+1=φ(xk),k=0,1,…(φ(x)称为迭代函数),更简单的说不动点也可看成y=φ(x)与y=x的交点。

我们可以通过下图来直观的感觉一下不动点迭代收敛的过程:

对于左图,斜率小于零,迭代路径是一圈一圈的缩小;对于右图,斜率大于零,迭代路径是直接折线式逼近不动点。

我们再通过下图来直观的感觉一下不动点迭代发散的过程:

对于左图,斜率小于零,迭代路径是一圈一圈的变大;对于右图,斜率大于零,迭代路径是直接折线式远离不动点。

2.2 案例及实现

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值