1.2 Newton迭代法
2 不动点迭代
2.1 基本思想
由f(x)=0==>x=φ(x)
若要求 x*满足 f(x*)=0,则 x*=φ(x*);反之亦然。则称 x*为函数 φ(x)的一个不动点。
选择一个初始近似值 x0,将它代入上式右端,即可求
x1=φ(x0)
可以如此反复迭代计算得到: xk+1=φ(xk),k=0,1,…(φ(x)称为迭代函数),更简单的说不动点也可看成y=φ(x)与y=x的交点。
我们可以通过下图来直观的感觉一下不动点迭代收敛的过程:
对于左图,斜率小于零,迭代路径是一圈一圈的缩小;对于右图,斜率大于零,迭代路径是直接折线式逼近不动点。
我们再通过下图来直观的感觉一下不动点迭代发散的过程:
对于左图,斜率小于零,迭代路径是一圈一圈的变大;对于右图,斜率大于零,迭代路径是直接折线式远离不动点。